摘要:
The invention relates to devices comprising field effect transistors to detect the power of an electromagnetic high frequency signal V RF . According to the prior art, the high frequency signal is coupled into the gate G and via a capacitor C GD into the drain D of the field effect transistor FET, the gate G being biased with a direct voltage V g which corresponds to the threshold value of the FET transistor. The resulting current at the source S contains a direct current portion I ds which is proportional to the square of the amplitude of the high frequency signal. The operating frequency of said power detectors is limited to a few gigahertz (GHz) by the discrete arrangement and especially by the predetermined gate length of the field effect transistor. The aim of the invention is to improve a resistive mixer in such a manner that it can be operated at high gigahertz and terahertz frequencies. For this purpose, the resistive mixer comprises a line which has a first and a second electrical conductor having respective connecting contacts so that an electrical high frequency signal can be coupled into the line, the first conductor having a plurality of series-connected voltage-dependent resistor elements (R) and at least one capacitive element (C) being interposed between the first and the second conductor.
摘要:
The present invention relates to a device for detecting millimeter waves, having at least one field effect transistor with a source, a drain, a gate, a gate-source contact, a source-drain channel, and a gate-drain contact. Compared to a similar such device, the problem addressed by the present invention, among others, is that of providing a device which enables the provision of a field effect transistor for detecting the power and/or phase of electromagnetic radiation in the Thz frequency range. In order to create such a device, it is suggested according to the invention, that a device be provided which has an antenna structure wherein the field effect transistor is connected to the antenna structure in such a manner that an electromagnetic signal received by the antenna structure in the THz range is fed into the field effect transistor via the gate-source contact, and wherein the field effect transistor and the antenna structure are arranged together on a single substrate.