摘要:
The present disclosure provides a method to fabricate high aspect ratio patterns in a semiconductor substrate that are elements of photonic devices by using a continuous metal mesh and etching in presence of air in a continuous flow and an etchant. In one approach, a stabilizing catalyst that involves the formation of a stable metal-semiconductor alloy allows to etch the substrate in vertical direction even in conditions of very low oxidant concentration (e.g. the oxidizer species being present in the air) without any external bias or magnetic field so to realize very high aspect ratio structures in the semiconductor substrate. The metal layer on the semiconductor substrate reacts with the oxidant contained in the air and catalyzes the semiconductor etching by the etchant. In one approach, the etchant is supplied by evaporating a water diluted HF solution. Air in continuous flow in proximity of the metal layer allows to maintain constant the oxidant concentration in proximity of the metal layer. This favors the mass transport of the reactant species and the etching by-products, thereby the process can continue for long time in order to form very high aspect ratio structures. Once the etched semiconductor structure is formed, the continuous air flow supports the reactant species diffusing through the etched semiconductor structure so to maintain a uniform etching rate of high aspect ratio structure. The continuous air flow supports the diffusion of the reaction by-products so to avoid the poisoning of the etching reaction. Structures with aspect ratios in the order of 10000:1 can be obtained with this method. The method has excellent capability of pattern transfer at the nanometer scale. Since the oxidant can be provided by the normal air, the system has particular advantage for implementation as it does not require any handling of hazardous and inflammable gases such as O 2 gas or instable chemicals, such as H 2 O 2 .
摘要:
Among the existent X-ray phase-contrast modalities, grating interferometry appears as a very promising technique for commercial applications, since it is compatible with conventional X-ray tubes and is robust from a mechanical point of view. However, since applications such as medical imaging and homeland security demand covering a considerable field of view, the fabrication of large-area gratings, which is known to be challenging and expensive, would be needed. A scanning setup is a good solution for this issue, because it uses cheaper line instead of large-area 2D detectors and, therefore, would require smaller gratings. In such a setup, the phase-retrieval using the conventional phase-stepping approach would be very slow, so having a faster method to record the signals becomes fundamental. To tackle this problem, the present invention proposes a scanning-mode grating interferometer design, in which a grating is tilted to form Moiré fringes perpendicular to the grating lines. The sample is then translated along the fringes, so each line detector records a different phase step for each slice of the sample.
摘要:
X-ray scattering imaging can provide complementary information about the unresolved microstructures of a sample. The scattering signal can be accessed with various methods based on coherent illumination, which span from self-imaging to speckle scanning. The directional sensitivity of the existing methods is limited to a few directions on the imaging plane and it requires the scanning of the optical components, or the rotation of either the sample or the imaging setup, if the full range of possible scattering directions is desired. Recently such an invention has been presented. However, the method requires a very high resolution and is only applicable to imaging setups where this is possible, such as synchrotron facilities. The present invention discloses a new arrangement that allows the simultaneous acquisition of the scattering images in all possible directions in a single shot without the need of high resolution or highly coherence sources. This is achieved by a specialized optical element and means of recording the generated fringe with sufficient spatial resolution.
摘要:
Among the existent X-ray phase-contrast modalities, grating interferometry appears as a very promising technique for commercial applications, since it is compatible with conventional X-ray tubes and is robust from a mechanical point of view. However, since applications such as medical imaging and homeland security demand covering a considerable field of view, the fabrication of large-area gratings, which is known to be challenging and expensive, would be needed. A scanning setup is a good solution for this issue, because it uses cheaper line instead of large-area 2D detectors and, therefore, would require smaller gratings. In such a setup, the phase-retrieval using the conventional phase-stepping approach would be very slow, so having a faster method to record the signals becomes fundamental. To tackle this problem, the present invention proposes a scanning-mode grating interferometer design, in which a grating is tilted to form Moiré fringes perpendicular to the grating lines. The sample is then translated along the fringes, so each line detector records a different phase step for each slice of the sample.
摘要:
The latest progresses in breast imaging using differential phase contrast techniques pose the question of how to fuse multiple information sources, yielded by absorption, differential phase, and scattering signals, into a single, informative image for clinical diagnosis. It is proposed to use an image fusion scheme based on a multiple-resolution framework. The three signals are first transformed into multiple bands presenting information at different frequencies and then a two-step processing follows: (1) intra-band processing enhances the local signal-to-noise ratio using a novel noise estimation method and context modeling; and (2) inter-band processing weights each band by considering their characteristics and contributions, and suppressing the global noise level. The fused image, looking similar to a conventional mammogram but with significantly enhanced detail features, is reconstructed by inverse transform. The fused image is compatible with clinical settings and enables the radiologists to use their years of diagnosis experiences in mammography.
摘要:
The present invention proposes a noninvasive method to distinguish two types of (micro)-calcification by x-ray imaging in mammography. Two major types of (micro)- calcification are found and confirmed by histopathology and they are correlated to benign and malignant breast lesions. Distinguishing them noninvasively will significantly improve early breast cancer diagnosis. This invention is based on the fact that these two types of (micro)- calcifications show opposite absorption and small-angle scattering signals in x-ray imaging. The imaging system, which can record these two signals of the breast tissue simultaneously (for instance, an x-ray grating interferometer), can be used to uniquely determine the micro- calcification type. The suggested invention is expected to be used in mammography to improve early breast cancer diagnosis, increase diagnosis accuracy and decrease the biopsy rate.
摘要:
Phase sensitive X-ray imaging methods can provide substantially increased contrast over conventional absorption based imaging, and therefore new and otherwise inaccessible information. The use of gratings as optical elements in hard X-ray phase imaging overcomes some of the problems that have impaired the wider use of phase contrast in X-ray radiography and tomography. So far, to separate the phase information from other contributions detected with a grating interferometer, a phase-stepping approach has been considered, which implies the acquisition of multiple radiographic projections. Here, an innovative, highly sensitive X-ray tomographic phase contrast imaging approach is presented based on grating interferometry, which extracts the phase contrast signal without the need of phase stepping. Compared to the existing phase step approach, the main advantage of this new method dubbed "reverse projection" is the significantly reduced delivered dose, without degradation of the image quality. The new technique sets the pre-requisites for future fast and low dose phase contrast imaging methods, fundamental for imaging biological specimens and in-vivo studies.