摘要:
A device for generating plasma for use in semiconductor fabrication, which includes a first radio frequency excitation source for outputting a first excitation current having a first phase and a first amplitude. The device further includes a second radio frequency excitation source for outputting a second excitation current having a second phase and a second amplitude and a plasma generating element having a first end and a second end for receiving respectively the first excitation current and the second excitation current. Moreover, the inventive device includes a control circuit having a control input for receiving a user-variable signal indicative of a desired phase difference between the first phase and the second phase. The control circuit, responsive to the control input, outputs a control signal to one of the first radio frequency excitation source and the second radio frequency excitation source for controlling respectively one of the first phase and the second phase, thereby causing an actual phase difference between the first phase and the second phase to substantially approximate the desired phase difference. In so doing, the device becomes essentially an inductive coupling device when the first phase and the second phase are opposite in phase. When the first phase and the second phase are in phase, the device becomes essentially a capacitive coupling device. Finally, when the first phase and the second phase differ by an angle that is between in phase and opposite in phase, the device becomes a combination inductive and capacitive coupling device.
摘要:
A power segmented electrode useful as part of an upper electrode and/or substrate support for supporting a substrate such as a semiconductor wafer in a plasma reaction chamber such as a single wafer etcher. The power segmented electrode includes a plurality of electrodes which are supplied radiofrequency power in a manner which provides uniform processing of the substrate. The power to the electrodes can be supplied through a circuit incorporating interelectrode gap capacitance, one or more variable capacitors, one or more current sensors, a power splitter, one or more DC biasing sources, and/or power amplifier.
摘要:
A power delivery system for providing energy to sustain a plasma in a plasma processing chamber configured for processing substrates. The power delivery system includes a metallic enclosure having an input port, a first output port, a second output port, and a third output port. There is further included a power distribution box disposed within the enclosure. The power distribution box includes a first AC input port for receiving AC power from external of the metallic enclosure through the input port and for providing AC power to AC loads external to the metallic enclosure via the first output port. There is also included a DC power supply electrically coupled to the power distribution box. The DC power supply is configured to receive the AC power from the power distribution box and to output DC power. The DC power supply is disposed within the metallic enclosure. The DC power is supplied to DC loads external of the metallic enclosure via the second output port. Additionally, there is included a first RF generator electrically coupled to the power distribution box to receive the AC power. The first RF generator is coupled with the DC power supply to receive the DC power. The first RF generator is disposed within the metallic enclosure. Further, there is included a first match network electrically coupled with an output of the first RF generator to receive RF energy from the first RF generator. The first match network has a first match network output for providing first matched RF energy to a first electrode of the plasma processing chamber via the third output port. The first match network is disposed within the metallic enclosure, wherein no other RF generator associated with the plasma processing chamber exists outside the metallic enclosure.
摘要:
A method in a plasma processing system for modifying a phase difference between a first radio frequency (RF) signal and a second RF signal. The first RF signal is supplied by a first RF power source to a first electrode and the second RF signal is supplied by a second RF power source to a second electrode of a plasma processing system. The second RF power source is coupled to the first RF power source as a slave RF power source in a master-and-slave configuration. The method includes the step of ascertaining a phase difference between a phase of the first RF signal and a phase of the second RF signal. The method further includes the step of comparing the phase difference with a phase control set point signal to output a control signal to the second RF power source, whereby the second RF power source, responsive to the control signal, modifies the phase of the second RF signal to cause the phase difference to approximate a phase difference value represented by the phase control set point signal.
摘要:
A method in a plasma processing system for modifying a phase difference between a first radio frequency (RF) signal and a second RF signal. The first RF signal is supplied by a first RF power source to a first electrode and the second RF signal is supplied by a second RF power source to a second electrode of a plasma processing system. The second RF power source is coupled to the first RF power source as a slave RF power source in a master-and-slave configuration. The method includes the step of ascertaining a phase difference between a phase of the first RF signal and a phase of the second RF signal. The method further includes the step of comparing the phase difference with a phase control set point signal to output a control signal to the second RF power source, whereby the second RF power source, responsive to the control signal, modifies the phase of the second RF signal to cause the phase difference to approximate a phase difference value represented by the phase control set point signal.
摘要:
A power delivery system for providing energy to sustain a plasma in a plasma processing chamber configured for processing substrates. The power delivery system includes a metallic enclosure having an input port, a first output port, a second output port, and a third output port. There is further included a power distribution box disposed within the enclosure. The power distribution box includes a first AC input port for receiving AC power from external of the metallic enclosure through the input port and for providing AC power to AC loads external to the metallic enclosure via the first output port. There is also included a DC power supply electrically coupled to the power distribution box. The DC power supply is configured to receive the AC power from the power distribution box and to output DC power. The DC power supply is disposed within the metallic enclosure. The DC power is supplied to DC loads external of the metallic enclosure via the second output port. Additionally, there is included a first RF generator electrically coupled to the power distribution box to receive the AC power. The first RF generator is coupled with the DC power supply to receive the DC power. The first RF generator is disposed within the metallic enclosure. Further, there is included a first match network electrically coupled with an output of the first RF generator to receive RF energy from the first RF generator. The first match network has a first match network output for providing first matched RF energy to a first electrode of the plasma processing chamber via the third output port. The first match network is disposed within the metallic enclosure, wherein no other RF generator associated with the plasma processing chamber exists outside the metallic enclosure.
摘要:
A power segmented electrode useful as part of an upper electrode and/or substrate support for supporting a substrate such as a semiconductor wafer in a plasma reaction chamber such as a single wafer etcher. The power segmented electrode includes a plurality of electrodes which are supplied radiofrequency power in a manner which provides uniform processing of the substrate. The power to the electrodes can be supplied through a circuit incorporating interelectrode gap capacitance, one or more variable capacitors, one or more current sensors, a power splitter, one or more DC biasing sources, and/or power amplifier.