Abstract:
A cathode with an improved work function, for use in a lithographic system, such as the SCALPEL™ system, which includes a buffer between a substrate and an emissive layer, where the buffer alters, randomizes, miniaturizes, and/or isolates the grain structure at a surface of the substrate to reduce the grain size, randomize crystal orientation and reduce the rate of crystal growth. The buffer layer may be a solid solution or a multiphase alloy. A method of making the cathode by depositing a buffer between a surface of the substrate and an emissive layer, where the deposited buffer alters, randomizes, miniaturizes, and/or isolates the grain structure at a surface of the substrate to reduce the grain size, randomize crystal orientation and reduce the rate of crystal growth.
Abstract:
A cathode (110) with an improved work function, for use in a lithographic system, such as the SCALPEL™ system, which includes a buffer (114) between a substrate (112) and an emissive layer (116), where the buffer alters, randomizes, miniaturizes, and/or isolates the grain structure at a surface of the substrate to reduce the grain size, randomize crystal orientation and reduce the rate of crystal growth. The buffer layer may be a solid solution or a multiphase alloy. A method of making the cathode by depositing a buffer between a surface of the substrate and an emissive layer, where the deposited buffer alters, randomizes, miniaturizes, and/or isolates the grain structure at a surface of the substrate to reduce the grain size, randomize crystal orientation and reduce the rate of crystal growth.
Abstract:
A method and apparatus for controlling beam emittance by placing a lens array in a drift space of an illumination system component. The illumination system component may be an electron gun or a liner tube or drift tube, attachable to an electron gun. The lens array may be one or more mesh grids or a combination of grids and continuous foils. The lens array forms a multitude of microlenses resembling an optical "fly's eye" lens. The lens array splits an incoming solid electron beam into a multitude of subbeams, such that the outgoing beam emittance is different from the incoming beam emittance, while beam total current remains unchanged. The method and apparatus permit independent control of beam current and beam emittance, which is beneficial in a SCALPEL illumination system.
Abstract:
The specification describes a method and apparatus for electron beam lithography wherein a Wehnelt electron gun is modified to improve the uniformity of the electron beam. The bias on the Wehnelt aperture (38) is reversed from the conventional bias so that it is biased positively with respect to the cathode. The Wehnelt opening is tapered with a disk emitter (36) inserted into the taper. The result of these modifications is an electron beam output with low brightness which is highly uniform over the beam cross section.
Abstract:
The specification describes a method and apparatus for electron beam lithography wherein a Wehnelt electron gun is modified to improve the uniformity of the electron beam. A mesh grid is applied to the Wehnelt aperture and the mesh grid functions as a multiple secondary emitter to produce a uniform beam flux over a wide area. The grid voltage of the modified gun is substantially lower than in a conventional Wehnelt gun, i.e. less than 100 volts, which can be switched conveniently and economically using semiconductor drive circuits.
Abstract:
An apparatus for projection lithography is disclosed. The apparatus has at least one magnetic doublet lens. An aperture scatter filter is interposed between the two lenses of the magnetic doublet lens. The aperture scatter filter is in the back focal plane of the magnetic doublet lens system, or in an equivalent conjugate plane thereof. The apparatus also has two magnetic clamps interposed between the two lenses in the magnetic doublet lens. The clamps are positioned and configured to prevent substantial overlap of the magnetic lens fields. The magnetic clamps are positioned so that the magnetic fields from the lenses in the magnetic doublet lens do not extend to the aperture scatter filter.
Abstract:
An apparatus for projection lithography is disclosed. The apparatus has at least one magnetic doublet lens. An aperture scatter filter is interposed between the two lenses of the magnetic doublet lens. The aperture scatter filter is in the back focal plane of the magnetic doublet lens system, or in an equivalent conjugate plane thereof. The apparatus also has two magnetic clamps interposed between the two lenses in the magnetic doublet lens. The clamps are positioned and configured to prevent substantial overlap of the magnetic lens fields. The magnetic clamps are positioned so that the magnetic fields from the lenses in the magnetic doublet lens do not extend to the aperture scatter filter.