摘要:
A semiconductor structure, which serves as the core of a semiconductor fabrication platform, has a combination of empty-well regions and filled-well regions variously used by electronic elements, particularly insulated-gate field-effect transistors (IGFETs), to achieve desired electronic characteristics. A relatively small amount of semiconductor well dopant is near the top of an empty well. A considerable amount of semiconductor well dopant is near the top of a filled well. Some IGFETs (100, 102, 112, 114, 124, and 126) utilize empty wells (180, 182, 192, 194, 204, and 206) in achieving desired transistor characteristics. Other IGFETs (108, 110, 116, 118, 120, and 122) utilize filled wells (188, 190, 196, 198, 200, and 202) in achieving desired transistor characteristics. The combination of empty and filled wells enables the semiconductor fabrication platform to provide a wide variety of high-performance IGFETs from which circuit designers can select particular IGFETs for various analog and digital applications, including mixed-signal applications.
摘要:
A gate electrode (302) of a field-effect transistor (102) is defined above, and vertically separated by a gate dielectric layer (300) from, a channel-zone portion (284) of body material of a semiconductor body. Semiconductor dopant is introduced into the body material to define a more heavily doped pocket portion (290) using the gate electrode as a dopant-blocking shield. A spacer (304T) having a dielectric portion situated along the gate electrode, a dielectric portion situated along the body, and a filler portion (SC) largely occupying the space between the other two spacer portions is provided. Semiconductor dopant is introduced into the body to define a pair of source/drain portions (280M and 282M) using the gate electrode and spacer as a dopant-blocking shield. The filler spacer portion is removed to convert the spacer to an L shape (304). Electrical contacts (310 and 312) are formed respectively to the source/drain portions.
摘要:
A special two-dimensional intrinsic base doping profile is utilized to improve the output current-voltage characteristics of a vertical bipolar transistor whose intrinsic base includes a main intrinsic portion (64M). The special doping profile is achieved with a pair of more lightly doped base portions (66) that encroach substantially into the intrinsic base below the main intrinsic base portion (64M). The two deep encroaching base portions (66) extend sufficiently close to each other to set up a two-dimensional charge-sharing mechanism that typically raises the magnitude of the punch-through voltage. The transistor's current-voltage characteristics are thereby enhanced. Manufacture of the transistor entails introducing suitable dopants into a semiconductor body. In one fabrication process, a fast-diffusing dopant is employed in forming the deep encroaching base portions (66) without significantly affecting earlier-created transistor regions.
摘要:
Insulated-gate field-effect transistors (IGFETs), both symmetric and asymmetric, suitable for a semiconductor fabrication platform that provides IGFETs for analog and digital applications, including mixed-signal applications, utilize empty-well regions in achieving high performance. A relatively small amount of semiconductor well dopant is near the top of each empty well. Each IGFET (100, 102, 112, 114, 124, or 126) has a pair of source/drain zones laterally separated by a channel zone of body material of the empty well (180, 182, 192, 194, 204, or 206). A gate electrode overlies a gate dielectric layer above the channel zone. Each source/drain zone (240, 242, 280, 282, 520, 522, 550, 552, 720, 722, 752, or 752) has a main portion (240M, 242M, 280M, 282M, 520M, 522M, 550M, 552M, 720M, 722M, 752M, or 752M) and a more lightly doped lateral extension (240E, 242E, 280E, 282E, 520E, 522E, 550E, 552E, 720E, 722E, 752E, or 752E). Alternatively or additionally, a more heavily doped pocket portion (250 or 290) of the body material extends along one of the source/drain zones. When present, the pocket portion typically causes the IGFET to be an asymmetric device.
摘要:
Vertical planar and non-planar insulated gate semiconductor device cells having improved ruggedness under drain avalanche conditions are disclosed. The cells employ high concentration implants which are strategically located in the central cell regions. The implants are effective to concentrate the electric field intensity and avalanche current flow in the central cell region and to prevent current flow into the base of a parasitic bipolar transistor, thereby preventing activation of the transistor. Both surface-peaked and subsurface-peaked implants are disclosed.
摘要:
An asymetric insulated-gate field-effect transistor is configured in an asymetric lightly doped drain structure that alleviates hot-carrier effects and enables the source characteristics to be decoupled from the drain characteristics. The transistor has a multipart channel formed with an output portion, which adjoins the drain zone, and a more heavily doped input portion, which adjoins the source zone. The drain zone contains a main portion and more lightly doped extension that meets the output channel portion. The drain extension extends at least as far below the upper semiconductor surface as the main drain portion so as to help reduce hot-carrier effects. The input channel portion is situated in a threshold body zone whose doping determines the threshold voltage. Importantly, the provision of a lightly doped source extension is avoided so that improving the drain characteristics does not harm the source characteristics, and vice versa. In fabricating complementary versions of the transistor, the threshold body zone of one transistor can be formed at the same time as the drain extension of a complementary transistor, and vice versa.
摘要:
A semiconductor structure contains a bipolar transistor (101) and a spacing structure (265-1 or 265-2). The transistor has an emitter (241), a base (243), and a collector (245). The base includes a base contact portion (243C-1), an intrinsic base portion (2431-1) situated below the emitter and above material of the collector, and a base link portion (243 L-I) extending between the intrinsic base and base contact portions. The spacing structure includes a spacing structure and an isolating dielectric layer (267-1 or 267-2) extending along the upper semiconductor surface. The spacing component includes a lateral spacing portion (269-1 or 269-2) of largely non-monocrystalline semiconductor material, preferably polycrystalline semiconductor material, situated on the dielectric layer above the base link portion. Opposite first and second lower edges (305-1 and 307-1) of the lateral spacing portion laterally conform to opposite first and second upper edges (297-1 and 299-1) of the base link portion so as to determine, and thereby control, its length.
摘要:
An insulated-gate field-effect transistor (100) provided along an upper surface of a semiconductor body contains a pair of source/drain zones (240 and 242) laterally separated by a channel zone (244). A gate electrode (262) overlies a gate dielectric layer (260) above the channel zone. Each source/drain zone includes a main portion (240M or 242M) and a more lightly doped lateral extension (240E or 242E) laterally continuous with the main portion and extending laterally under the gate electrode. The lateral extensions, which terminate the channel zone along the upper semiconductor surface, are respectively largely defined by a pair of semiconductor dopants of different atomic weights. With the transistor being an asymmetric device, the source/drain zones constitute a source and a drain. The lateral extension of the source is defined with dopant of higher atomic weight than the lateral extension of the drain.
摘要:
An asymmetric insulated-gate field-effect transistor (100) has a source (240) and a drain (242) laterally separated by a channel zone (244) of body material (180) of a semiconductor body. A gate electrode (262) overlies a gate dielectric layer (260) above the channel zone. A more heavily doped pocket portion (250) of the body material extends largely along only the source. Each of the source and drain has a main portion (240M or 242M) and a more lightly doped lateral extension (240E or 242E). The drain extension is more lightly doped than the source extension. The maximum concentration of the semiconductor dopant defining the two extensions occurs deeper in the drain extension than in the source extension. Additionally or alternatively, the drain extension extends further laterally below the gate electrode than the source extension. These features enable the threshold voltage to be highly stable with operational time.