摘要:
The present invention relates to an extracellular binding domain for an allosteric inhibitor, whereby said binding domain is derived from a single membrane span tyrosine kinase receptor. More specifically, the invention relates to an extracellular domain derived from a Fibroblast Growth Factor Receptor (FGFR). It further relates to the use of this domain for the identification of similar domains in the extracellular part of other tyrosine kinase receptors, and to a screening method for identification of a small compound allosteric inhibitor.
摘要:
The invention relates to compounds corresponding to formula (I): R4 NN R1 O R2 R3 (I) 5 6 7 8 in which - R2 and R3 together form, with the carbon atoms of the phenyl nucleus to which they are attached, a 6-membered nitrogenous heterocycle corresponding to one of formula (A), (B) or (C) below: N N O O Ra Ra' N N O Rb Rb' N O Rc Rc'' Rc' (A) (B) (C) in which the wavy lines represent the phenyl nucleus to which R2 and R3 are attached. Preparation process and therapeutic use.
摘要:
The present invention relates to FGF-R4 receptor-specific antagonist molecules enabling the inhibition of the activity of said receptor. Said antagonists are, particularly, FGF-R4-specific antibodies enabling the inhibition of the activity of said receptor. The present invention also relates to the therapeutic use of said antibodies, particularly in the field of angiogenesis and in the treatment of certain types of cancer.
摘要:
The invention relates to the use of compounds corresponding to formula (I) in which R 2 and R 3 together form, with the carbon atoms of the phenyl nucleus to which they are attached, a 6-membered nitrogenous heterocycle corresponding to one of the formulae (A), (B) and (C) in which the wavy lines represent the phenyl nucleus to which R 2 and R 3 are attached, or of a pharmaceutically acceptable salt thereof, for preparing a medicament for the treatment of bladder cancer.
摘要:
The invention relates to compounds corresponding to formula (I): N R1 O R3 R4 R2 (I) in which - R3 and R4 together form, with the carbon atoms of the phenyl nucleus to which they are attached, a 6-membered nitrogenous heterocycle corresponding to one of formula (A), (B) or (C) below: N N O O Ra Ra' N N O Rb Rb' N O Rc Rc'' Rc' (A) (B) (C) in which the wavy lines represent the phenyl nucleus to which R3 and R4 are attached. Preparation process and therapeutic use.