摘要:
A molecular sieve catalyst and a preparation method thereof to produce light olefins from catalytically cracking naphtha in severe environments of high temperature and high moisture, are disclosed. In detail, the catalyst is prepared by spray-drying and calcining the mixed slurry, in which 0.01~5.0 wt% of MnO 2 and 1~15 wt% of P 2 O 5 are simultaneously embedded in catalyst which consists of zeolite, clay and inorganic complex. According to the present invention, the method that manganese and phosphate are embedded simultaneously in zeolite and inorganic complex is used to increase thermal-stability of obtained spherical catalyst, and increase olefin yield of cracking hydrocarbon such as naphtha by protecting acid-site of zeolite. To synthesize the required catalyst, the important procedures are mixing ratio and mixing sequence of Mn, P, zeolite, and inorganic complex.
摘要:
Disclosed is a method for producing a quality lubricant base oil (meeting the standard of Group III or higher) comprising: decarbonylating mixed fatty acids derived from oils and fats of biological origin to produce mixed olefins; oligomerizing the mixed olefins to produce an olefinic lubricant base oil; and performing hydrogenation to remove olefins from the olefinic lubricant base oil.
摘要:
Disclosed herein is a catalyst for aqueous-phase reforming of biomass-derived polyols, which comprises platinum and copper as active metals and a mixture of magnesia and alumina as a support. The catalyst contains a small amount of platinum and, at the same time, has high hydrogen selectivity and low methane selectivity.
摘要:
Embodiments of the present invention relate to drilling oil, and to a method of preparing the drilling oil, including converting C16 and/or C18 fatty acids derived from fat of biological origin into C15 and/or C17 olefins through decarbonylation.
摘要:
This invention relates to a method of preparing a mixed manganese ferrite coated catalyst, and a method of preparing 1,3-butadiene using the same, and more particularly, to a method of preparing a catalyst by coating a support with mixed manganese ferrite obtained by co-precipitation at 10˜40° C. using a binder and to a method of preparing 1,3-butadiene using oxidative dehydrogenation of a crude C4 mixture containing n-butene and n-butane in the presence of the prepared catalyst. This mixed manganese ferrite coated catalyst has a simple synthetic process, and facilitates control of the generation of heat upon oxidative dehydrogenation and is very highly active in the dehydrogenation of n-butene.