摘要:
The invention relates to a method of making alkali metal silicide compositions, and the compositions resulting from the method, comprising mixing an alkali metal with silicon and heating the resulting mixture to a temperature below about 475 °C. The resulting compositions do not react with dry O 2 . Also, the invention relates to sodium silicide compositions having a powder X-ray diffraction pattern comprising at least three peaks with 2Theta angles selected from about 18.2, 28.5, 29.5, 33.7, 41.2, 47.4, and 56.2 and a solid state 23 Na MAS NMR spectra peak at about 18 ppm. Moreover, the invention relates to methods of removing a volatile or flammable substance in a controlled manner. Furthermore, the alkali metal silicide compositions of the invention react with water to produce hydrogen gas.
摘要:
A catalytic process for dehydration of an aliphatic C 2 -C 6 alcohol to its corresponding olefin is disclosed, The process continuously (lows through a reaction zone a liquid phase containing an aliphatic C 2 -C 6 alcohol to contact a non-volatile acid catalyst at a reaction temperature and pressure to at least partially convert the aliphatic C 2 -C 6 alcohol in the liquid phase to its corresponding olefin. The reaction pressure is greater than atmospheric pressure and the reaction temperature is above the boiling point of the olefin at reaction pressure, but below the critical temperature of the alcohol, and the olefin product is substantially in the gaseous phase. After the contacting step, the olefin containing gaseous phase is separated from the liquid phase. The invention also relates to catalytic processes such as a hydrolysis of an olefin to an alcohol, an esterification, a transesterification, a polymerization, an aldol condensation or an ester hydrolysis.
摘要:
A method for treating Group 1 metal/silica gel compositions that are pyrophoric is provided to convert them into Group 1 metal/silica gel compositions that are no longer pyrophoric. A method for treating Group 1 metal/porous metal oxide compositions that are pyrophoric is provided to convert them into Group 1 metal/porous metal oxide compositions that are no longer pyrophoric. The pyrophoric Group 1 metal/silica gel composition or the pyrophoric Group 1 metal/porous metal oxide composition is treated with a low amount of dry oxygen or low concentration of dry oxygen mixture to convert them into compositions that are no longer pyrophoric or reactive with dry oxygen or air.
摘要:
Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium suicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.
摘要:
The disclosure describes a new class of isomorphously metal- substituted aluminophosphate materials with high phase purity that are capable of performing selective Brönsted acid catalyzed chemical transformations, such as transforming alcohols to olefins, with high conversions and selectivities using mild conditions. Isomorphous substitutions of functional metal ions for both the aluminum ions and the phosphorous ions were successful in various AlPO structures, along with multiple metal substitutions into a single aluminum site and/or a phosphorous site. This invention can be used towards the catalytic conversion of hydroxylated compounds of linear and/or branched moiety with the possibility of being substituted to their respective hydrocarbon products, preferably light olefins containing 2 to 10 carbon atoms, among other chemistries.
摘要:
The invention relates to lithium metal/porous metal oxide compositions. These lithium metal compositions are prepared by mixing liquid lithium metal with a porous metal oxide in an inert atmosphere under exothermic conditions sufficient to absorb the liquid lithium metal into the porous metal oxide pores. The lithium metal/porous metal oxide compositions of the invention are preferably loaded with lithium metal up to about 40% by weight, with about 20% to 40% by weight being the most preferred loading. The invention also relates to lithium reagent-porous metal oxide compositions having RLi absorbed into a porous oxide. The preparation and use of these compositions are also described.
摘要:
A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen, The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.
摘要:
Stage 1 Group 1 metal/porous metal oxide compositions or Stage II Group 1 metal/porous metal oxide compositions are shown to be useful to remove impurities and act as drying agents for various types of solvents and for olefinic monomers used in anionic polymerizations. One important advantage of these compositions is their ability to dry simultaneously solvent and monomers, without inducing a significant polymerization of the latter. Another important characteristic is the capacity of the compositions to be totally inactive toward conventional anionic polymerization which allows them to be left in situ during the polymerization itself.