摘要:
The present invention relates to compositions and methods for forming a bit body for an earth-boring bit. The bit body may comprise hard particles, wherein the hard particles comprise at least one of carbide, nitride, boride, oxide, and solid solutions thereof, and a binder binding together the hard particles. The binder may comprise at least one metal selected from cobalt, nickel, and iron and, optionally, at least one melting point reducing constituent selected from a transition metal carbide in the range of 30 to 60 weight percent, boron up to 10 weight percent, silicon up to 20 weight percent, chromium up to 20 weight percent, and manganese up to 25 weight percent, wherein the weight percentages are based on the total weight of the binder. In addition, the hard particles may comprise at least one of (i) cast carbide (WC+W2C) particles, (ii) transition metal carbide particles selected from the carbides of titanium, chromium, vanadium, zirconium, hafnium, tantalum, molybdenum, niobium, and tungsten, and (iii) sintered cemented carbide particles.
摘要:
Earth-boring tools for drilling subterranean formations include a particle-matrix composite material comprising a plurality of silicon carbide particles dispersed throughout a matrix material, such as, for example, an aluminum or aluminum-based alloy. In some embodiments, the silicon carbide particles comprise an ABC-SiC material. Methods of manufacturing such tools include providing a plurality of silicon carbide particles within a matrix material. Optionally, the silicon carbide particles may comprise ABC-SiC material, and the ABC-SiC material may be toughened to increase a fracture toughness exhibited by the ABC-SiC material. In some methods, at least one of an infiltration process and a powder compaction and consolidation process may be employed.
摘要:
Methods for forming earth-boring tools include providing a metal or metal alloy bonding agent at an interface between a first element and a second element and sintering the first element, the second element, and the boding agent to form a bond between the first element and the second element at the interface. The methods may be used, for example, to bond together portions of a body of an earth-boring tool (which may facilitate, for example, the formation of cutting element pockets) or to bond cutting elements to a body of an earth-boring tool (e.g., a bit body of a fixed-cutter earth-boring drill bit or a cone of a roller cone earth-boring drill bit). At least partially formed earth-boring tools include a metal or metal alloy bonding agent at an interface between two or more elements, at least one of which may comprise a green or brown structure.
摘要:
A method for applying a non-magnetic, abrasive, wear-resistant hardfacing material to a surface of a drill string member includes providing a non-magnetic drill string member formed of a non-magnetic material, the drill string member having an outer surface. It also includes providing a non-magnetic hardfacing precursor material comprising a plurality of non-magnetic, sintered carbide pellets and a non-magnetic matrix material; heating a portion of the non-magnetic hardfacing precursor material to a temperature above the melting point of the matrix material to melt the matrix material. It further includes applying the molten non-magnetic matrix material and the plurality of non-magnetic, sintered carbide pellets to the exterior surface of the drill string member; and solidifying the molten non-magnetic matrix material to form a layer of a non-magnetic hardfacing material having a plurality of non-magnetic, sintered carbide pellets dispersed in the hardfacing material.
摘要:
An earth-boring bit (11) has a steel body (13) and bearing pin for rotatably supporting a cone. The cone has an exterior surface containing rows of cutting elements. The cone (21) and cutting elements (35) are formed of cemented tungsten carbide. The cone may be manufactured by applying pressure to a mixture of hard particles and metal alloy powder to form a billet, then machining the billet to a desired over-sized conical shaped product. Then the conical-shaped product is liquid-phase sintered to a desired density, which causes shrinking to the desired final shape.
摘要:
A composite material comprising a plurality of hard particles surrounded by a matrix materia] comprising a plurality of nanoparticles. Earth boring tools including the composite material and methods of forming the composite material are also disclosed. A polycrystalline material having a catalyst material including nanoparticles in interstitial spaces between inter-bonded crystals of the polycrystalline material and methods of forming the polycrystalline material are also disclosed.
摘要:
A method of constructing an earth-boring, diamond-impregnated drill bit has a first step of coating diamond grit with tungsten to create tungsten-coated diamond particles. These coated particles are then encapsulated in a layer of carbide powder held by an organic green binder material. The encapsulated granules are then mixed along with a matrix material and placed in a mold. The matrix material includes a matrix binder and abrasive particles. The mixture is heated in the mold at atmospheric pressure to cause the matrix binder to melt and infiltrate the encapsulated granules and abrasive particles.
摘要:
Methods of forming at least a portion of an earth-boring tool include providing particulate matter comprising a hard material in a mold cavity, melting a metal and the hard material to form a molten composition comprising a eutectic or near-eutectic composition of the metal and the hard material, casting the molten composition to form the at least a portion of an earth-boring tool within the mold cavity, and adjusting a stoichiometry of at least one hard material phase of the at least a portion of the earth-boring tool. Methods of forming a roller cone of an earth-boring rotary drill bit comprise forming a molten composition, casting the molten composition within a mold cavity, solidifying the molten composition to form the roller cone, and converting an eta-phase region within the roller cone to at least one of WC and W 2 C.
摘要:
Geometric compensation techniques are used to improve the accuracy by which features may be located on drill bits formed using particle compaction and sintering processes. In some embodiments, a positional error to be exhibited by at least one feature in a less than fully sintered bit body upon fully sintering the bit body is predicted and the at least one feature is formed on the less than fully sintered bit body at a location at least partially determined by the predicted positional error. In other embodiments, bit bodies of earth-boring rotary drill bits are designed to include a design drilling profile and a less than fully sintered bit body is formed including a drilling profile having a shape differing from a shape of the design drilling profile. Less than fully sintered bit bodies of earth-boring rotary drill bits are formed using such methods.