摘要:
A magnetic resonance imaging system is provided. The system includes a solenoid magnet configured to generate a static magnetic field and an annular coil assembly housed within at least a portion of the solenoid magnet. The coil assembly includes a gradient coil, wherein the annular coil assembly has an aperture formed therein.
摘要:
Disclosed herein are planning, navigation and simulation systems and methods for minimally invasive therapy in which the planning method and system uses patient specific pre-operative images. The planning system allows for multiple paths to be developed from the pre-operative images, and scores the paths depending on desired surgical outcome of the surgery and the navigation systems allow for minimally invasive port based surgical procedures, as well as craniotomies in the particular case of brain surgery.
摘要:
System and methods are provided for adaptively and interoperatively configuring an automated arm used during a medical procedure. The automated arm is configured to position and orient an end effector on the automated arm a desired distance and orientation from a target. The end effector may be an external video scope and the target may be a surgical port. The positions and orientations of the end effector and the target may be continuously updated. The position of the arm may be moved to new locations responsive to user commands. The automated arm may include a multi-joint arm attached to a weighted frame. The weighted frame may include a tower and a supporting beam.
摘要:
Disclosed herein is a method for producing an evolvable tissue model of a patient and, using this model, modelling physical transformations of the tissue (e.g. deformation) of the tissue model by interacting the tissue model with influence models which model interactions with the tissue such as surgical instruments, pressure, swelling, temperature changes etc. The model is produced from a set of input data of the tissue which includes directional information of the tissue. The directional information is used to produce an oriented tissue map. A tissue model is then produced from the oriented tissue map such that the tissue model reflects the directionality of the tissue component. When the tissue model is subjected to an influence that causes tissue deformation over a period of time, the tissue model directionally deforms over the period of time in a manner which reflects a trajectory of the influence interacting with the directionality of the tissue component.
摘要:
Systems, methods and devices are provided for intraoperatively confirming location of tissue structures during medical procedures. Preoperative image data of a patient's skeletal structure in a vicinity of an anatomical part undergoing a medical procedure is acquired. During the procedure, after exposing tissue intraoperative image data is acquired by scanning a selected region of tissue, in a vicinity of the skeletal structure using Polarization Sensitive-Optical Coherence Tomography (PS-OCT). Regions of tissue exhibiting structural organization in the vicinity of the skeletal structure are identified from the intraoperative (PS-OCT) image data. Geometrically correlating and registering the intraoperative (PS-OCT) image data with the preoperative image data of the skeletal structure in the vicinity of the anatomical part is then performed using a priori known anatomical information about the regions of tissue exhibiting structural information.
摘要:
Methods and systems for providing treatment planning information for a neurology procedure, including neurosurgical procedures. A database containing historical data about historical procedures is accessed. Historical data relevant to a neurology procedure is determined, based on a determination of similarity to a set of data characterizing the neurology procedure. Historical instances of procedure parameters relevant to the neurology procedure are determined and displayed.
摘要:
A method of data acquisition at a magnetic resonance imaging (MRI) system is provided. The system receives at least a portion of raw data for an image, and detects anomalies in the portion of raw data received. When anomalies are detected, the system can correct those anomalies dynamically, without waiting for a new scan to be ordered. The system can attempt to scan the offending portion of the raw data, either upon detection of the anomaly or at some point during the scan. The system can also correct anomalies using digital correction methods based on expected values. The anomalies can be detected based on variations from thresholds, masks and expected values all of which can be obtained using one of the ongoing scan, previously performed scans and apriori information relating to the type of scan being performed.
摘要:
Insertable imaging devices, and methods of use thereof in minimally invasive medical procedures, are described. In some embodiments, insertable imaging devices are described that can be introduced and removed from an access port without disturbing or risking damage to internal tissue. In some embodiments, imaging devices are integrated into an access port, thereby allowing imaging of internal tissues within the vicinity of the access port, while, for example, enabling manipulation of surgical tools in the surgical field of interest. In other embodiments, imaging devices are integrated into an imaging sleeve that is insertable into an access port. Several example embodiments described herein provide imaging devices for performing imaging within an access port, where the imaging may be based one or more imaging modalities that may include, but are not limited to, magnetic resonance imaging, ultrasound, optical imaging such as hyperspectral imaging and optical coherence tomography, and electrical conductive measurements.
摘要:
System and methods are provided for adaptively and interoperatively configuring an automated arm used during a medical procedure. The automated arm is configured to position and orient an end effector on the automated arm a desired distance and orientation from a target. The end effector may be an external video scope and the target may be a surgical port. The positions and orientations of the end effector and the target may be continuously updated. The position of the arm may be moved to new locations responsive to user commands. The automated arm may include a multi-joint arm attached to a weighted frame. The weighted frame may include a tower and a supporting beam.