摘要:
A probe for application to a selected area of a subject's skin covering a body part, which selected area serves as a measurement site for measuring changes in the pulsatile arterial blood volume thereat, includes: a base for application to the selected area of the subject's skin at the measurement site; a pressure applicator for applying a static pressure to the subject's skin at the measurement site; and a sensor for sensing changes in the pulsatile arterial blood volume at the measurement site. The pressure applicator is designed to apply to the measurement site a static pressure of a magnitude to partially unload the wall tension of, but not to occlude, the arteries. The pressure applicator is configured to substantially prevent venous distention and blood pooling at the measurement site by permitting free venous drainage through tissues surrounding the measurement site. This is done by configuring the pressure applicator to apply the static pressure to a relatively restricted area of the subject's skin, which area occupies a relatively small fraction of the surface perimeter of the respective body part at the measurement site, to thereby permit free venous drainage from the measurement site via a wide region of unrestricted passageways surrounding the measurement site.
摘要:
Methods for treating a patient using therapeutic renal neuromodulation and associated devices, systems, and methods are disclosed herein. One aspect of the present technology is directed to biomarker sampling in the context of neuromodulation devices, systems, and methods. Some embodiments, for example, are directed to catheters, catheter systems, and methods for sampling biomarkers that change in response to neuromodulation. A system can include, for example, an elongated shaft and a neuromodulation and sampling assembly having a neuromodulation and a sampling element.
摘要:
The present invention provides devices and methods that can prevent or ameliorate bronchoconstriction by stimulating neural activity, in contrast to those techniques based on denervation, ablation or blocking of neural activity. Methods and devices according to the invention may act responsively or on demand, can preserve neuronal structure and function and will be associated with minimal collateral side-effects. In particular, the invention provides devices and methods in which a signal is delivered to the vagus nerve, for example the cervical vagus nerve or the pulmonary branch of the vagus nerve, in order to stimulate neural activity in the vagal nerve.
摘要:
In a wearable device attached to a subject, an acceleration information measurement unit that measures acceleration information, and a biological signal information measurement unit that measures biological signal information of the subject, are provided. From the measured acceleration information and biological signal information, first feature data corresponding to a first predetermined period and second feature data corresponding to a second predetermined period are extracted. By machine learning based on the first feature data, a dynamic/static activity identification model, a dynamic-activity identification model, and a static-activity identification model, for the subject, are generated. By combination of results of determination based on each of the identification models, a posture and an activity of the subject are identified. Correspondence information, which associates the identified posture and activity with the biological signal information of the subject, is generated.
摘要:
In a wearable device attached to a subject, an acceleration information measurement unit that measures acceleration information, and a biological signal information measurement unit that measures biological signal information of the subject, are provided. From the measured acceleration information and biological signal information, first feature data corresponding to a first predetermined period and second feature data corresponding to a second predetermined period are extracted. By machine learning based on the first feature data, a dynamic/static activity identification model, a dynamic-activity identification model, and a static-activity identification model, for the subject, are generated. By combination of results of determination based on each of the identification models, a posture and an activity of the subject are identified. Correspondence information, which associates the identified posture and activity with the biological signal information of the subject, is generated.