摘要:
Method of the osteoreparative processes' correction and/or bone defect restoration by means of human cell-based products (cell and/or tissue transplants) and the method of its manufacturing. The invention a creates and establishes conditions for osteoreparative processes restoration in destroyed bone tissue by osteoreparation cell sources restoration as the result of use cell technologies and bone tissue engineering methods, e.g. scaffold-guided regeneration, particularly by means of cell transplantation by injection and/or transplantation of original three-dimensional osteoreparative prevascularized graft (3D-OPG). Manufacturing of medical products and preparations of the product based on human cells (cell and/or tissue transplants) is dedicated for impaired osteoreparative processes correction and/or bone defect restoration.
摘要:
A method of facilitating augmentation of osseous tissue on a surface of a bone is disclosed. The method includes combining a scaffolding, an enclosure substantially enclosing the scaffolding relatively to the surface of the bone and a cell culture seeded onto the scaffolding.
摘要:
The invention provides a particulate composition adapted for forming a bone graft substitute cement upon mixing with an aqueous solution, comprising i) a calcium sulfate hemihydrate powder, wherein the calcium sulfate hemihydrate is present at a concentration of at least about 50 weight percent based on the total weight of the particulate composition; ii) a monocalcium phosphate monohydrate powder; iii) a non-porous β-tricalcium phosphate powder; and iv) a porous β-tricalcium phosphate powder. Bone graft substitute cements made therefrom, a bone graft substitute kit comprising the particulate composition, methods of making and using the particulate composition, and articles made from the bone graft substitute cement are also provided.
摘要:
Compositions of small molecules, matrices, and isolated cells including methods of preparation, and methods for differentiation, transdifferentiation, and proliferation of animal cells into the osteoblast blast cell lineage were described. Examples of osteogenic materials that were administered to cells or co-cultured with cells are represented by compounds of Formula II, IV, and VI independently or preferably in combination with a matrix to afford bone cells. Small molecule-stimulated cells were also combined with a matrix, placed with a cellular adhesive or material carrier and implanted to a site in an animal for bone repair. Matrix pretreated with compounds of Formula II, IV, and VI were also used to cause cells to migrate to the matrix that is of use for therapeutic purposes.
摘要:
A method for making a porous devitalised scaffold suitable for use in repair of osseous, chondral, or osteochondral defects in a mammal comprises the steps of providing micronized extracellular matrix (ECM) tissue, mixing the micronized extracellular matrix with a liquid to provide a slurry, and freeze-drying the slurry to provide the porous scaffold. A porous scaffold suitable for use in repair of osseous, chondral, or osteochondral defects in a mammal and comprising a porous freeze-dried matrix formed from micronised decellularised extracellular matrix tissue is also described.
摘要:
A composition including, (a) a mineral particle, (b) endothelial cells and mesenchymal cells, and (3) hyaluronic acid, is provided. Moreover, a kit which includes: a syringe, a mineral particle covered with endothelial cells and mesenchymal cells organized in 2 or more cell layers attached to the mineral particle, and hyaluronic acid, is also provided. Last, a method for filling a gap in a bone of a subject in need thereof, including contacting the gap with a composition of: (a) a mineral particle, (b) endothelial cells and mesenchymal cells, and (3) hyaluronic acid is provided.
摘要:
A bioresorbable skeletal construct member formed from an osteoinductive composition comprising autogenic bone and an extracellular matrix (ECM) material, the construct member being configured to induce osteoanagenesis and angiogenesis when implanted proximate endogenous bone and tissue.
摘要:
There is disclosed a method of combining mesenchymal stem cells (MSCs) with a bone substrate. In an embodiment, the method includes obtaining tissue having MSCs together with unwanted cells. The tissue is digested to form a cell suspension having MSCs and unwanted cells. The cell suspension is added to the substrate. The substrate is cultured to allow the MSCs to adhere. The substrate is rinsed to remove unwanted cells. In various embodiments, the tissue is adipose issue, muscle tissue, or bone marrow tissue. In an embodiment, there is disclosed an allograft product including a combination of MSCs with a bone substrate in which the combination is manufactured by culturing MSCs disposed on the substrate for a period of time to allow the MSCs to adhere to the substrate, and then rinsing the substrate to remove unwanted cells from the substrate. Other embodiments are also disclosed.
摘要:
Provided herein are bone grafts and methods of making and using the same, as well as products and kits that include such bone grafts. In particular, bone grafts are provided that include osteogenic stem cells in a mix of osteoinductive demineralized bone matrix and osteoconductive cortico-cancellous chips.