Abstract:
An inflatable structure apparatus for use as an inflatable medical device, wherein the apparatus has a shell having a shell longitudinal axis, a central section, a first neck section and a second neck section, strips extending between the first neck section and the second neck section to provide added longitudinal stiffness to the apparatus, wherein the apparatus has a first aperture on the first neck section and/or a second aperture on the second neck section.
Abstract:
The present disclosure describes flow stagnation control components that allow improved flow control in systems including injection members, while also limiting the creation of regions of little to no flow in the vasculature, resulting in low flow zones or dead zones. The flow stagnation control components can be formed as an imposed minimum conductance component or a controlled flow partitioning system.
Abstract:
An apparatus for performing a medical procedure in the vasculature comprises an inflatable perfusion balloon including a passage for transmitting fluid in an inflated condition of the balloon. A metal or wire mesh is positioned along or over at least a portion of the inflatable balloon. The mesh may allow fluid to flow through the wire mesh into the passage when the balloon is inflated. The mesh may comprise a wire sock or sleeve, and may comprise a shape memory material, such as Nitinol. Related methods are also disclosed.
Abstract:
Devices, systems, and methods for delivery of therapeutics, in particular thrombolytic agents, in particular plasmin, are provided. The devices, systems, and methods also provide for occlusion of a vessel or graft distal and/or proximal to a treatment zone. Also provided are devices, systems, and methods that trap emboli.
Abstract:
A system for moving particles suspended in a first fluid, for infusion into the stream of a second fluid, includes a catheter with a multi-lumen distal separator. The separator is formed with a plurality of parallel lumens, wherein each lumen has a predetermined diameter. Importantly, the diameter of each lumen is dimensioned to sequentially receive particles therethrough, to prevent the particles from flocculating before they enter the stream of the second fluid. A recollection chamber in fluid communication with the separator allows for reconsolidation of the fluid after leaving the separator and for minimizing the damage caused to the vessel when the fluid exits the catheter. An inflatable balloon, affixed to the outside of the catheter, can be provided to regulate flow of the second fluid and thereby facilitate entry of the particles into the stream of the second fluid and increase retention of particles in targeted tissue.
Abstract:
A metal balloon catheter having a main tubular body, a metal balloon proximate a distal end of the main tubular body, a central annulus extending along an entire longitudinal aspect of the catheter for accommodating a guidewire therethrough and an inflation annulus adjacent the central annulus which extends along the longitudinal axis of the main tubular body and terminates in fluid flow communication with an inflation chamber of the metal balloon. The metal balloon catheter may be either unitary integral metal catheter in which the main tubular body and the balloon are fabricated of metal, or it may consist of a polymeric main tubular body and a metal balloon.