Abstract:
Polymeric sorbents for aldehydes including formaldehyde are provided. More particularly, the polymeric sorbents are a reaction product of a divinylbenzene/maleic anhydride precursor polymeric material with a nitrogen-containing compound. The nitrogen-containing compound is covalently attached to the resulting polymeric sorbent. Additionally, methods of sorbing aldehydes (i.e., aldehydes that are volatile under use conditions) on the polymeric sorbents and compositions resulting from the sorption of aldehydes on the polymeric sorbents are provided. The polymeric sorbents typically are porous with the pores often being in the size range of mesopores and/or micropores.
Abstract:
The present invention concerns methods of treating systemic, regional, or local inflammation from a patient suffering or at risk of inflammation comprising administration of a therapeutically effective dose of a sorbent that sorbs an inflammatory mediator in said patient. In some preferred embodiments, the sorbent is a biocompatible organic polymer.
Abstract:
Embodiments of systems and methods for producing a coated activated carbon comprise the steps of providing activated carbon particles having a particle size up to about 100 μm, and coating the activated carbon particles by spraying droplets of a cationic polymer solution onto the surface of the activated carbon particles, wherein the cationic polymer solution comprises about 1% to about 15% by weight cationic polymer and the droplet size is between about 5 μm to about 100 μm.
Abstract:
The present invention relates to a stabilized inorganic oxide support for capturing carbon dioxide from gases having high regeneration capacities over many cycles. The method for preparing the stabilized inorganic oxide support includes stabilizing an alumina-containing precursor by either calcining or steaming, impregnating an alkali or alkaline earth compound into the stabilized alumina-and drying the alkali or alkaline earth compound-impregnated stabilized alumina. The stabilized inorganic oxide support can be regenerated at lower temperatures between 100 and 150° C. The carbon dioxide adsorption capacity of the regenerated support is between 70 and 90% of the theoretical carbon dioxide adsorption capacity.
Abstract:
This invention provides a nonaqueous lithium-type storage element using an activated carbon having a specific porous structure in a positive electrode. A storage element using a conventional carbonaceous material in a positive electrode has a problem that, although the capacitance is large, the output characteristics are disadvantageously unsatisfactory. The nonaqueous lithium-type storage element using a material, which can occlude and release lithium ions in a negative electrode, can improve output characteristics while maintaining the energy density of the storage element at a substantially equal value by using, in a positive electrode, an activated carbon, satisfying 0.3
Abstract:
A porous carbon having a high oxidation reaction temperature, a method of manufacturing the porous carbon, and an adsorption/desorption apparatus using the porous carbon are provided. A porous carbon includes mesopores and a carbonaceous wall forming an outer wall of the mesopores, characterized by being composed mainly of hard carbon and having an oxidation reaction temperature of 600°C or higher. It is desirable that the porous carbon have an average interlayer spacing d(002) of 0.350 nm or greater, as determined by an X-ray diffraction method after heating the porous carbon at 2500°C or higher for 30 minutes to 60 minutes.
Abstract:
There is provided an absorbent for decreasing the leakage of halogen compound gases in subsequent processes, at high temperature and in the presence of high concentration water vapor in the process of heating and gasifying a fuel such as coal to produce synthesis gas. The present invention relates to a halogen compound absorbent containing 30 to 90% by mass of a basic calcium compound and 10 to 70% by mass of a compound of a metal other than calcium and/or of a clay mineral, and a method for producing synthesis gas using the absorbent.
Abstract:
This invention relates to a molecular sieve, which has a specific XRD diffraction pattern and a specific layered structure. As compared with a prior art molecular sieve, the molecular sieve according to this invention exhibits improved catalytic performances and good service life and regeneration performance. The molecular sieve can be produced with a simplified procedure, under mild operation conditions, with less energy and material consumption and less side reactions, with a high product purity at low cost and a high yield. The molecular sieve according to this invention is especially suitable for use as an adsorbent or a catalyst.
Abstract:
A porous carbon that can sufficiently adsorb water vapor on a high humidity side is provided. A porous carbon is characterized by having mesopores and micropores and having a water vapor adsorbed amount ratio, as defined by the following expression (1), of 1.8 or higher. It is particularly preferable that the water vapor adsorbed amount ratio as defined by the following expression (1) be 2.0 or higher. It is also preferable that the water vapor adsorbed amount at a relative humidity of 70% be 50 mg/g or greater. Water vapor adsorbed amount ratio = water vapor adsorbed amount at a relative humidity of 90 % / water vapor adsorbed amount at a relative humidity of 70 % .