摘要:
Aspects of this disclosure pertain to a colorless material that includes a carrier, copper-containing particles, and quaternary ammonium. In one or more embodiments, the material exhibits, in the CIE L*a*b* system, an L* value in the range from about 91 to about 100, and a C* value of less than about 7, wherein C* equals √(a*2 + b*2). In some embodiments, the material exhibits a greater than 3 log reduction in a concentration of Staphylococcus aureus, under the EPA Test Method for Efficacy of Copper Alloy as a Sanitizer testing conditions.
摘要:
Aspects of this disclosure pertain to a colorless material that includes a carrier, copper-containing particles, and either one or both of sodium thiocyanate and titanium dioxide. In one or more embodiments, the material exhibits, in the CIE L*a*b* system, an L* value in the range from about 91 to about 100, and a C* value of less than about 7, wherein C* equals √(a*2+b*2). In some embodiments, the material exhibits a greater than 3 log reduction in a concentration of Staphylococcus aureus, under the EPA Test Method for Efficacy of Copper Alloy as a Sanitizer testing conditions.
摘要:
The present invention relates to a phosphor plate comprising: a base plate; and phosphor included in the base plate, and provides a phosphor plate and a method for manufacturing the same, wherein one side of the phosphor plate comprises: a protrusion part formed by protrusion of the phosphor fixed to the base plate; and a recess part formed by separation of the phosphor from the base plate, the protrusion part being 20 to 70% with respect to the area of one side of the phosphor plate.
摘要:
Embodiments are directed to glass frits containing phosphors that can be used in LED lighting devices and for methods associated therewith for making the phosphor containing glass frit and their use in glass articles, for example, LED devices.
摘要:
Provided is a windowpane for a combustion apparatus in which a light-blocking layer containing an inorganic pigment powder and a glass powder is formed on a surface of a transparent crystallized glass plate and the light-blocking layer can sufficiently hide an adhesive, a gasket or the like used to fix the windowpane to the body of the combustion apparatus and which can reduce the occurrence of cracks due to heat in the light-blocking layer. A windowpane for a combustion apparatus in which a light-blocking layer containing an inorganic pigment powder and a glass powder is formed on a surface of a transparent crystallized glass plate, wherein the light-blocking layer contains 30 to 50% by mass of the inorganic pigment powder and 50 to 70% by mass of the glass powder and has a thickness of 1 to 10 µm and the inorganic pigment powder has an average particle size of 0.8 µm or less.
摘要:
In a glass-ceramics composite comprising a glass phase and a crystalline phase which contains an oxide system ceramics dispersed in the glass phase, by making the composition of material which forms the glass phase meet specific conditions, the thermal conductivity of the glass-ceramics composite which is obtained by firing the glass phase and the crystalline phase is raised. Thereby, a glass-ceramics composite which is suitable for a low-temperature firing use and has a high thermal conductivity is provided.
摘要:
A light source using a wavelength conversion member is increased in brightness. A wavelength conversion element 11 includes a plurality of wavelength conversion members 12 bundled together, each containing a dispersion medium and phosphor powder dispersed in the dispersion medium.
摘要:
The invention relates to a glass item, at least one of the surfaces thereof having antimicrobial properties that are resistant to a temperature treatment, especially a temperature treatment in preparation of the subsequent tempering thereof. The glass item especially comprises an antimicrobial agent beneath the surface of the glass, and an inorganic component in the mass of the glass close to said surface, the concentration of the inorganic component being distributed according to a diffusion profile.
摘要:
An object of the present invention is to provide an infrared-shielding nanoparticle dispersion that has a property whereby visible light is adequately transmitted, and light in the near-infrared region is adequately shielded; an infrared-shielding body manufactured using the infrared-shielding nanoparticle dispersion; a method for manufacturing infrared-shielding nanoparticles that are used in the infrared-shielding nanoparticle dispersion; and infrared-shielding nanoparticles manufactured using the method for manufacturing infrared-shielding nanoparticles. The present invention is a method for manufacturing infrared-shielding nanoparticle dispersion obtained by dispersing infrared-shielding nanoparticles in a medium, an infrared-shielding body manufactured by using the infrared-shielding nanoparticle dispersion, and infrared-shielding nanoparticles used in the infrared-shielding nanoparticle dispersion, wherein the infrared-shielding nanoparticles include a substance expressed by the general formula MXAYW(1-Y)O3 (where M is one or more elements selected from H, He, alkali metals, alkaline-earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I; A is one or more elements selected from Mo, Nb, Ta, Mn, V, Re, Pt, Pd, and Ti; W is tungsten; O is oxygen; 0