摘要:
The present invention provides microorganisms capable of converting acetyl-coA into crotyl alcohol as well as fermentation methods for producing crotyl alcohol, either alone, or in combination with acetone and/or isopropanol. The microorganisms may be genetically engineered to express and/or disrupt one or more of the following enzymes: acetaldehyde dehydrogenase, alcohol dehydrogenase, bifunctional acetaldehyde/alcohol dehydrogenase, aldehyde oxidoreductase, phosphotransacetylase, acetate kinase, CoA-transferase A, CoA-transferase B, acetoacetate decarboxylase, secondary alcohol dehydrogenase, butyryl-CoA dehydrogenase (BCD), and/or trans-2-enoyl-CoA reductase (TER).
摘要:
Microorganisms and methods of producing n-butyraldehyde with enhanced yields are presented in which a microorganism is engineered to enhance the conversion of a carbon source into n-butyraldehyde. The n-butyraldehyde is recovered by way of a gas stripping process that occurs during the conversion process, providing significantly greater product yield than post-fermentation recovery of n-butyraldehyde alone.
摘要:
A combination of an electrochemical device for delivering reducing equivalents to a cell, and engineered metabolic pathways within the cell capable of utilizing the electrochemically provided reducing equivalents is disclosed. Such a combination allows the production of commodity chemicals by fermentation to proceed with increased carbon efficiency.
摘要:
A combination of an electrochemical device for delivering reducing equivalents to a cell, and engineered metabolic pathways within the cell capable of utilizing the electrochemically provided reducing equivalents is disclosed. Such a combination allows the production of commodity chemicals by fermentation to proceed with increased carbon efficiency.
摘要:
Microorganisms and methods of producing n-butyraldehyde with enhanced yields are presented in which a microorganism is engineered to enhance the conversion of a carbon source into n-butyraldehyde. The n-butyraldehyde is recovered by way of a gas stripping process that occurs during the conversion process, providing significantly greater product yield than post-fermentation recovery of n-butyraldehyde alone.