Abstract:
A precombustion-chamber type gas engine, comprising includes: a check valve disposed in the precombustion-chamber gas supply passage and configured to block a backflow of fuel gas from a precombustion chamber; a supply pressure control valve which is disposed on an upstream side of the check valve in the precombustion-chamber gas supply passage and which is capable of adjusting a pressure of the fuel gas to be supplied to the precombustion chamber; a torch strength information acquisition device configured to obtain torch strength information correlated to strength of a torch from the injection nozzle, on the basis of a pressure in the main chamber and a pressure in the precombustion chamber; a precombustion-chamber gas supply amount calculation device configured to calculate an amount of the fuel gas to be supplied to a precombustion-chamber gas supply amount, on the basis of the torch strength information and correlation information representing a correlation between the torch strength information, a thermal efficiency, and the precombustion-chamber gas supply amount; and a precombustion-chamber gas supply pressure control device configured to control the supply pressure control valve on the basis of the precombustion-chamber gas supply amount calculated by the precombustion-chamber gas supply amount calculation device.
Abstract:
Provided is a shut-off valve fault diagnosis device (6) that performs fault diagnosis of a shut-off valve (41) including a first valve body (103) that is opened in advance during power supply and a second valve body (104) that is opened due to a decrease in a differential pressure between upstream and downstream after the opening. The shut-off valve fault diagnosis device (6) includes a diagnosis processing unit (66) that estimates an open and shut state of each of the first and second valve bodies (103, 104) from a time-variable characteristic in a downstream pressure of the shut-off valve (41), and performs the fault diagnosis of the shut-off valve (41) from an actual measurement value of the downstream pressure based on the estimation result.
Abstract:
Disclosed are a fuel supply system and method for a ship engine. The fuel supply system for a ship engine of the present invention comprises: a first flow channel which is connected to an LNG storage tank of a ship, pumps and vaporizes liquid natural gas stored in the LNG storage tank, and supplies the same to a first engine provided to the ship; a pressure reducing flow channel which branches out from the first flow channel, reduces the pressure of the pumped and vaporized natural gas, and supplies the same to a second engine provided to the ship; and a pressure maintaining flow channel which branches out from the pressure reducing flow channel and supplies the pressure reduced natural gas to the LNG storage tank.
Abstract:
A control valve includes a seat portion through which the fluid passes, a poppet which has a valve body portion and is configured to move relative to the seat portion, and a poppet throttle passage defined between the seat portion and the valve body portion. The poppet throttle passage is formed to gradually increase a flow passage area in a horizontal cross-section perpendicular to center axes of the seat portion and the valve body portion from an upstream side to a downstream side.
Abstract:
A valve (4, 4′) for a fuel system for a combustion engine: A ball retainer (26) is provided with a cavity (28) to accommodate a ball (22). The ball (22) has a first seal surface (30) to cooperate with and abut sealingly against a seat (32). The ball retainer (26) has a secondary seal surface (34) to cooperate with and abut sealingly against the seat (32) when the ball (22) is not in the ball retainer (26). Also, a method for controlling a fuel system for a combustion engine.
Abstract:
Provided is a gas engine having a spark plug provided with a pre-combustion chamber and a check valve, the gas engine, in which the check valve is arranged in the neighborhood of the pre-combustion chamber, being capable of preventing adhesion of a solenoid controlled valve provided at an upstream side of the check valve due to soot accumulation, and dead volume in a fuel inlet passage. In a gas engine in which fuel gas is supplied to the pre-combustion chamber through the fuel gas inlet passage and the fuel gas supplied in the pre-combustion chamber is ignited by spark discharge at the spark plug that is fitted to a mounting hardware piece via a seat surface, a solenoid valve for performing open-close control of the fuel gas is provided, and a first check valve is also provided posterior to a discharge side of the solenoid valve so as to prevent back flow of the combustion gas from the pre-combustion chamber to the solenoid controlled valve.
Abstract:
A valve (4, 4′) for a fuel system for a combustion engine: A ball retainer (26) is provided with a cavity (28) to accommodate a ball (22). The ball (22) has a first seal surface (30) to cooperate with and abut sealingly against a seat (32). The ball retainer (26) has a secondary seal surface (34) to cooperate with and abut sealingly against the seat (32) when the ball (22) is not in the ball retainer (26). Also, a method for controlling a fuel system for a combustion engine.
Abstract:
The present invention relates to a check valve for injecting gas, which enables smooth injection of gas, improved productivity by allowing quick and simple disassembly and assembly, an increased usage life by providing enhanced durability by means of minimizing abrasion of main parts, and prevention of backflow of uncombusted gas. The check vale for injecting gas, according to the present invention comprises: an integrally formed body provided with a corrugated portion having a diameter smaller than other areas on an outer surface of an upper portion of a gas flow hole; an integrally formed spindle which perpendicularly penetrates the body, and is provided with a corrugated portion having a diameter smaller than other areas on an outer surface of a lower portion of the gas flow hole of the body; a spring which penetrates an upper end portion of the spindle; a spring seat for fixing the spring penetrating the upper end portion of the spindle and for guiding the spindle to a perpendicular position; a coupling ring, which is coupled to an upper end of the body, for fixing the body to a prechamber; and a spacer, which is coupled to a lower end of the body, for fixing the lower end of the body that covers an outer edge of the spindle to the prechamber.