摘要:
In a gas-intake-port array structure, which enables any temperature fluctuation during conveying time of a printed circuit board, a semiconductor wafer or the like to be reduced and allows the printed circuit board and the like to be very uniformly heated or cooled, a nozzle pattern P2 is arranged to be line symmetry with a nozzle pattern P1 in one upper or lower divided section of a nozzle layout region of the nozzle cover 3 relative to a center portion that is orthogonal to a conveying direction, as shown in FIG. 1 . In order for the arrangement patterns diagonally arranged in the nozzle layout region to become identical, the nozzle pattern P1 is arranged to be line symmetry with the nozzle pattern P2 in the other upper or lower divided section. Intake ports 3b, 3c and 3d each having a predetermined opening width are arranged between two blowing nozzles 2 or more and across a first row thereof and plural other rows having different phases, in order to circulate the gas blown from the blowing nozzles 2. Widths of the intake ports 3b, 3c and 3d are set so that they are gradually become narrower with increasing distance from the center portion.
摘要:
In a gas-intake-port array structure, which enables any temperature fluctuation during conveying time of a printed circuit board, a semiconductor wafer or the like to be reduced and allows the printed circuit board and the like to be very uniformly heated or cooled, a nozzle pattern P2 is arranged to be line symmetry with a nozzle pattern P1 in one upper or lower divided section of a nozzle layout region of the nozzle cover 3 relative to a center portion that is orthogonal to a conveying direction, as shown in FIG. 1 . In order for the arrangement patterns diagonally arranged in the nozzle layout region to become identical, the nozzle pattern P1 is arranged to be line symmetry with the nozzle pattern P2 in the other upper or lower divided section. Intake ports 3b, 3c and 3d each having a predetermined opening width are arranged between two blowing nozzles 2 or more and across a first row thereof and plural other rows having different phases, in order to circulate the gas blown from the blowing nozzles 2. Widths of the intake ports 3b, 3c and 3d are set so that they are gradually become narrower with increasing distance from the center portion.
摘要:
A heat treatment jig for supporting silicon semiconductor substrates by contacting, being loaded onto a heat treatment boat in a vertical heat treatment furnace, comprises; the configuration of a ring or a disc structure with the thickness between 1.5 and 6.0 mm; the deflection displacement of 100 µm or less at contact region in loaded condition; the outer diameter which is 65% or more of the diameter of said substrate; and the surface roughness (Ra) of between 1.0 and 100 µm at the contact region. The use of said jig enables to effectively retard the slip generation and to avoid the growth hindrance of thermally oxidized film at the back surface of said substrate, diminishing the surface steps which should cause the defocus in photolithography step in device fabrication process, thereby enabling to maintain high quality of silicon semiconductor substrates and to substantially enhance the device yield.
摘要:
[Problem] The long-term use of a conventional jig for calcining an electronic component arises a problem such as peel-off of a zirconia surface layer. Even if the performance is not deteriorated in the short-term use, the zirconia surface layer reacts with the electronic component to shorten the life of the jig for calcining the electronic component when the use is prolonged for a longer period of time. [Means for solving problem] A jig for calcining an electronic component is provided which is stable after use of a longer period of time by suitably setting the composition of a zirconia surface layer. For example, in the zirconia surface layer containing zirconia particles and a partially fused-bonding agent, an amount of calcia is made to be 4 to 15 % in weight.
摘要:
The preparation for the reduction of oxidation in graphite products consisting of the solution comprising aluminum or zinc dihydrogenphosphate or their mixtures with the excess of metal oxide in the form of colloidal particle in the sizes of 20-500 nm.
摘要:
A method for processing solar cells comprising: - providing a vertical furnace to receive an array of mutually spaced circular semiconductor wafers for integrated circuit processing; - composing a process chamber loading configuration for solar cell substrates, wherein a size of the solar cell substrates that extends along a first surface to be processed is smaller than a corresponding size of the circular semiconductor wafers, such that multiple arrays of mutually spaced solar cell substrates can be accommodated in the process chamber, - loading the solar cell substrates into the process chamber; - subjecting the solar cell substrates to a process in the process chamber.
摘要:
A wafer support for supporting a semiconductor wafer during a process including varied temperature. The wafer support includes a body having a top surface adapted to receive the semiconductor wafer so a portion of the top surface supports the wafer. The top surface has a recessed area including an inclined surface rising from a bottom of the recessed area. The inclined surface has an incline angle that is no more than about ten degrees.
摘要:
In this heat treatment jig and method for silicon wafers, a silicon wafer is heat-treated while being mounted on support projections provided on three support arms, having an intervening spacing, protruding from a support frame towards the center. At that time, all the support projections under the silicon wafer are positioned on a same circle within a region where a radial distance from the center is defined by 85 to 99.5% of the wafer radius, and the support arms form an angle of 120° with each other about the center. With this jig and method, free depth of a dislocation generated from a pin position can be controlled deeper than a device formation region, and a widest slip-free region where the surface is free from slip dislocation is obtained.
摘要:
The invention relates to a method and to a device for the thermal treatment of substrates, in particular semiconductor wafers, and to a holding unit for substrates. In the method, in a process unit having a process chamber and having a plurality of radiation sources, one or more substrates are held in a box having a lower part and having a cover, wherein the lower part and the cover form a holding space for the substrate therebetween. Furthermore, the following steps are performed in the method: loading the box and the substrate into the process chamber and closing the process chamber; purging the holding space of the box with a purging gas and/or a process gas before the box and the substrate contained therein are heated to a desired process temperature in order to establish a desired atmosphere inside the box; and heating the box and the substrate contained therein to the desired process temperature by means of thermal radiation emitted by the radiation sources. The holding unit for substrates is designed to support the substrates in a process unit having a process chamber and having a plurality of radiation sources. The holding unit has a lower part and a cover, which form a box therebetween in the closed state, said box having a holding space for the substrate, wherein at least one of the parts has a plurality of purging openings, which connect a periphery of the box to the holding space in order enable the purging of the holding space in the closed state of the box, wherein the purging openings are designed in such a way that the purging openings substantially prevent the passage of thermal radiation of the radiation sources.
摘要:
A method for processing solar cells comprising: - providing a vertical furnace to receive an array of mutually spaced circular semiconductor wafers for integrated circuit processing; - composing a process chamber loading configuration for solar cell substrates, wherein a size of the solar cell substrates that extends along a first surface to be processed is smaller than a corresponding size of the circular semiconductor wafers, such that multiple arrays of mutually spaced solar cell substrates can be accommodated in the process chamber, - loading the solar cell substrates into the process chamber; - subjecting the solar cell substrates to a process in the process chamber.