摘要:
Provided is a rare earth-containing SiC substrate that can reduce breaking and cracks during the processing of the substrate. This rare earth-containing SiC substrate includes a biaxially oriented SiC layer wherein a ratio of a concentration CB of B to a concentration CRE of a rare earth element, CB/CRE, is 1.0 × 10-2 to 1.0 × 105.
摘要:
The present invention relates to a method of manufacturing a mono-crystalline metal foil including a step of thermally treating a poly-crystalline metal foil positioned to be spaced from a base to afford a mono-crystalline metal foil, and a mono-crystalline metal foil manufactured thereby, and can provide a mono-crystalline metal foil having a large area by thermally treating the poly-crystalline metal foil under a condition of a minimum stress applied to the poly-crystalline metal foil.
摘要:
The present invention concerns a substrate comprising a continuous or discontinuous layer of silicon and/or germanium consisting of one or a plurality of monocrystalline grains, and on said layer, one or a plurality of objects of varying shapes consisting of materials which require substrates having a crystalline orientation (111) suitable for the epitaxial growth of same. The invention also concerns a method for producing such a substrate.
摘要:
L'invention concerne une électrode comportant une couche de nucléation pour la croissance épitaxiale, comportant successivement (a) une couche électro-conductrice présentant une rugosité de surface telle que le Rq (norme ISO 4287) est inférieur à 20 nm, de préférence inférieure à 10 nm, en particulier inférieure à 5 nm, ladite couche électro-conductrice étant de préférence supportée par un substrat, (b) une couche barrière d'un nitrure métallique électro-conducteur choisi parmi les nitrures de titane (TiN), de bore (BN), de tantale (TaN), d'aluminium (AlN), de tungstène (W 2 N), de molybdène (Mo 2 N), de niobium (NbN) et de chrome (CrN), présentant une épaisseur comprise entre 2 nm et 100 nm, de préférence entre 5 et 50 nm et en particulier entre 8 et 20 nm, et (d) une couche de silicium et/ou de germanium cristallin constituée d'un ou plusieurs monocristaux, jointifs ou non, tous orientés de sorte que leur plan cristallin (111) soit sensiblement parallèle à la surface de la couche barrière et présentant une épaisseur inférieure à 100 nm, de préférence comprise entre 10 et 80 nm, en particulier entre 15 et 50 nm.
摘要:
The invention relates to a method for restructuring a semiconductor layer (2) with a multiplicity of lasers (18, 20, 22) which are arranged next to one another and, by means of respectively assigned beam shaping optics (46, 48, 50), project on the semiconductor layer (2) laser lines (8, 10, 12) arranged next to one another, with marginal regions (15, 17) and inner overlapping regions (14, 16), wherein at least the overlapping regions (14, 16) are projected completely and on passive regions (14, 16) of the semiconductor layer (2) in which the semiconductor layer is removed in a following processing step, and relates to a laser system for carrying out the method.
摘要:
The present invention is related to a method for forming a layer of a mono-crystalline semiconductor material on a substrate, comprising: - providing a substrate, - growing epitaxially a template comprising at least one monolayer of a semiconductor material on the substrate, thereafter - depositing an amorphous layer of said semiconductor material on the template, - performing a thermal treatment or a laser anneal thereby completely converting said amorphous layer of said semiconductor material into a mono-crystalline layer of said semiconductor material. According to an embodiment, the semiconductor material is Ge and the substrate is a Si substrate. The template is preferably a few monolayers thick.
摘要:
The present invention provides nanoparticle film and methods of making such films. The nanoparticle film comprises a three dimensional cross-linked array of nanoparticles and linker molecules. The nanoparticle film is coherent, robust and self supporting. The film may be produced by adding linker molecules to a suspension of nanoparticles. The linker molecules form cross-links between the nanoparticles. Prior to completion of the cross-linking reaction the cross-linked nanoparticles are separated from the suspension.