摘要:
A milling machine for a dental item comprises a six (6) axis motion system. A workpiece is fixed in space. Each of a pair of opposed tool spindles operates in 3 DOF, with an x-axis (laterally, left or right) being along an axis of each working tool, a rotational (theta (θ)) axis (rotationally in or out), and a z-axis (up or down). On each respective side of the block, the x-axis rides on a θ-axis, and the θ-axis rides on the z-axis. Each z-axis supports a first carriage adapted to move up or down along the z-axis, and the first carriage supports a motor having a shaft. The shaft's rotational axis is the θ-axis. A second carriage is mounted on the shaft for rotation about the θ-axis. A spindle assembly is mounted on the second carriage for lateral (left or right) movement along the x-axis carried by the θ-axis.
摘要:
An intra-oral laser digitizer system provides a three-dimensional visual image of a real-world object such as a dental item through a laser digitization. The laser digitizer captures an image of the object by scanning multiple portions of the object in an exposure period. The intra-oral digitizer may be inserted into an oral cavity (in vivo) to capture an image of a dental item such as a tooth, multiple teeth or dentition. The captured image is processed to generate the three-dimension visual image.
摘要:
An improved milling machine makes use of individually controlled x-axis, y-axis, and z-axis carriages. These carriages provide positive and precise control of the position of the cutting tools and the blank to be cut. The tools are located in spindles that are moved in the x-axis. A work piece or blank is manipulated in the y-axis and the z-axis. The tools are offset in the x-axis. Lights on a work space door are used to signal the condition of the mill machine and the milling operation. A tool changer allows the tools to be changed to accommodate other materials. A camera or other sensor is used to detect the location and wear on the tools.
摘要:
An intra-oral laser digitizer system provides a three-dimensional visual image of a real-world object such as a dental item through a laser digitization. The laser digitizer captures an image of the object by scanning multiple portions of the object in an exposure period. The intra-oral digitizer may be inserted into an oral cavity (in vivo) to capture an image of a dental item such as a tooth, multiple teeth or dentition. The captured image is processed to generate the three-dimension visual image.
摘要:
A digitized image of an object may include representations of portions of the object that are obscured, occluded or otherwise unobservable. The image may be a multi-dimensional visual representation of dentition. Characteristics of the dentition and its surfaces, contours, and shape may be determined and/or analyzed. A light may be directed toward and reflected from the dentition. The reflected light may be combined with a reference to determine characteristics of the dentition, including obscured areas such as subgingival tissue.
摘要:
A system provides high-speed multiple line digitization for three-dimensional imaging of a physical object. A full frame of three-dimensional data may be acquired in the same order as the frame rate of a digital camera.
摘要:
The improved milling machine makes use of individually controlled x-axis, y-axis, and z-axis carriages. These carriages provide positive and precise control of the position of the cutting tools and the blank to be cut. A tool changer allows the tools to be changed to accommodate other materials. A camera is used to detect wear on the tools.
摘要:
An improved milling machine makes use of individually controlled x-axis, y-axis, and z-axis carriages. These carriages provide positive and precise control of the position of the cutting tools and the blank to be cut. The tools are located in spindles that are moved in the x-axis. A work piece or blank is manipulated in the y-axis and the z-axis. The tools are offset in the x-axis. Lights on a work space door are used to signal the condition of the mill machine and the milling operation. A tool changer allows the tools to be changed to accommodate other materials. A camera or other sensor is used to detect the location and wear on the tools.