Abstract:
A system for reconditioning barrels comprising: a robot arm; a router assembly for routing the inside surface of a barrel; and a laser assembly for measuring the inside profile of a barrel, wherein: the router assembly is fixedly attached to the robot arm; and the laser assembly is removably attached to the router assembly thus allowing the laser assembly to be removed while the barrel is being routed in order to protect the laser from airborne particles and vibrations from the router.
Abstract:
The invention relates to a machine comprising a first machining module (1) configured to simultaneously machine at least two crankshafts, a second machining module (2) configured to simultaneously machine at least two crankshafts, and a support structure (3) with at least four crankshaft fixing positions (31, 32, 33, 34) for the machining of such crankshafts. The support structure (3) is located between the machining modules. The fixing positions (31, 32, 33, 34) are arranged in two columns (35, 36) of fixing positions, each of which comprises at least two of the fixing positions (31, 32; 33, 34) located at a different height, and the support structure (3) is rotatably arranged, such that it can perform a rotation of at least 180 degrees.
Abstract:
A method and apparatus are provided to machine a curved surface such as an inner or outer peripheral surface of a pipe. The pipe is held stationary during machining and a rotatable spindle of a machine head moves along multiple orthogonal axes to align the rotational axis of the spindle with the longitudinal pipe axis. Preferably, the pipe axis is located by using a touch probe to engage the curved surface at multiple spots and the calculating the location of the pipe axis. The cutting tool, which is preferably a cutting tool insert, is rotated by the spindle to machine the curved surface.
Abstract:
A piston pin hole boring system and method of forming pin holes therewith includes fixing a piston to a fixture supported by a slide member. Then, rotating a cutting member about a first axis and moving the slide member with the fixture thereon toward the cutting member along the first axis and bringing the piston into cutting contact with the cutting member. Further, moving the fixture along second and third axes, each extending transversely to the first axis and machining the desired pin hole contours in the piston with the cutting member.
Abstract:
Metallic guide elements having a functional area are made from profiled blanks by hot forming the profiled blanks and subsequently milling in a high speed milling cutter system the profiled blanks by a position-controlled milling cutter head with milling disks of a great diameter, wherein in the step of hot forming the profiled blanks are matched with regard to a cross-sectional mass distribution of the profiled blanks, respectively, to the subsequent step of milling such that by a partial cutting removal in the areas of the profiled blanks that become the functional area of the guide element narrow dimensional tolerances are produced. The material flow of the profiled blanks within the high-speed milling cutter system is controlled autonomously by an integrated stacking device that has manipulators and turning stations.
Abstract:
An apparatus and method for hybrid machining a workpiece is disclosed. The workpiece is powered as an anode, a cutter is powered as a cathode and a cutting fluid or coolant is circulated therebetween. The cutter is made of a conductive material and a non-conductive abrasive material. The hybrid machine performs a roughing pass machining operation in which material is removed from the workpiece at a relatively high rate using a high-speed electro-erosion (HSEE) process. Then, the hybrid machine performs a finish pass machining operation in which material is removed from the workpiece using precision electro-grinding (PEG) process at a different differential electrical potential and/or flushing rate than the roughing pass machining operation to provide a smooth finish without thermal effects on the workpiece.
Abstract:
A method and apparatus are provided to machine a curved surface such as an inner or outer peripheral surface of a pipe. The pipe is held stationary during machining and a rotatable spindle of a machine head moves along multiple orthogonal axes to align the rotational axis of the spindle with the longitudinal pipe axis. Preferably, the pipe axis is located by using a touch probe to engage the curved surface at multiple spots and the calculating the location of the pipe axis. The cutting tool, which is preferably a cutting tool insert, is rotated by the spindle to machine the curved surface.
Abstract:
To produce rotationally symmetrical surfaces of a workpiece (10), the rotationally driven workpiece (10) is subjected to rotational machining. For this purpose, a tool is used (12), whose blade (16) is advanced in a circular arc motion (f). The blade (16) takes the form of a coaxial helix in relation to the rotational axis (A1) of the tool.
Abstract:
An improved milling machine makes use of individually controlled x-axis, y-axis, and z-axis carriages. These carriages provide positive and precise control of the position of the cutting tools and the blank to be cut. The tools are located in spindles that are moved in the x-axis. A work piece or blank is manipulated in the y-axis and the z-axis. The tools are offset in the x-axis. Lights on a work space door are used to signal the condition of the mill machine and the milling operation. A tool changer allows the tools to be changed to accommodate other materials. A camera or other sensor is used to detect the location and wear on the tools.
Abstract:
For introducing a weakened line into a component 10, which is rigid per se and does not conform to a supporting mold or a receiving means in correspondence with the true shape, especially into an injection-molded part such as an instrument panel of an automobile, a device is provided comprising a multi-axis machine tool with a CNC-control suited for processing base-oriented programs, and a receiving means 11 for the component 10 to be processed, distance sensors 13 for the CNC-control being assigned to the receiving means to detect the actual three-dimensional position of the component.