摘要:
An optically active material is used to create power devices and circuits having significant performance advantages over conventional methods for affecting optical control of power electronics devices and circuits. A silicon-carbide optically active material is formed by compensating shallow donors with the boron related D-center. The resulting material can be n-type or p-type but it is distinguished from other materials by the ability to induce persistent photoconductivity in it when illuminated by electromagnetic radiation with a photon energy in excess of the threshold energy required to photoexcite electrons from the D-center to allowed states close to the conduction band edge, which varies from polytype to polytype.
摘要:
A method of making a semi-insulating epitaxial layer includes implanting a substrate or a first epitaxial layer formed on the substrate with boron ions to form a boron implanted region on a surface of the substrate or on a surface of the first epitaxial layer, and growing a second epitaxial layer on the boron implanted region of the substrate or on the boron implanted region of the first epitaxial layer to form a semi-insulating epitaxial layer.
摘要:
Methods of making semiconductor devices such as vertical junction field effect transistors (VJFETs) or bipolar junction transistors (BJTs) are described. The methods do not require ion implantation. The VJFET device has an epitaxially regrown n-type channel layer and an epitaxially regrown p-type gate layer as well as an epitaxially grown buried gate layer. Devices made by the methods are also described.
摘要:
Methods of making semiconductor devices such as vertical junction field effect transistors (VJFETs) or bipolar junction transistors (BJTs) are described. The methods do not require ion implantation. The VJFET device has an epitaxially regrown n-type channel layer and an epitaxially regrown p-type gate layer as well as an epitaxially grown buried gate layer. Devices made by the methods are also described.
摘要:
A vertical junction field effect transistor (VJFET) having a mesa termination and a method of making the device are described. The device includes: an n-type mesa on an n-type substrate; a plurality of raised n-type regions on the mesa comprising an upper n-type layer on a lower n-type layer; p-type regions between and adjacent the raised n-type regions and along a lower sidewall portion of the raised regions; dielectric material on the sidewalls of the raised regions, on the p-type regions and on the sidewalls of the mesa; and electrical contacts to the substrate (drain), p-type regions (gate) and the upper n-type layer (source). The device can be made in a wide-bandgap semiconductor material such as SiC. The method includes selectively etching through an n-type layer using a mask to form the raised regions and implanting p-type dopants into exposed surfaces of an underlying n-type layer using the mask.
摘要:
Junction field-effect transistors with vertical channels and self-aligned regrown gates and methods of making these devices are described. The methods use techniques to selectively grow and/or selectively remove semiconductor material to form a p-n junction gate along the sides of the channel and on the bottom of trenches separating source fingers. Methods of making bipolar junction transistors with self-aligned regrown base contact regions and methods of making these devices are also described. The semiconductor devices can be made in silicon carbide.
摘要:
A vertical junction field effect transistor (VJFET) having a mesa termination and a method of making the device are described. The device includes: an n-type mesa on an n-type substrate; a plurality of raised n-type regions on the mesa comprising an upper n-type layer on a lower n-type layer; p-type regions between and adjacent the raised n-type regions and along a lower sidewall portion of the raised regions; dielectric material on the sidewalls of the raised regions, on the p-type regions and on the sidewalls of the mesa; and electrical contacts to the substrate (drain), p-type regions (gate) and the upper n-type layer (source). The device can be made in a wide-bandgap semiconductor material such as SiC. The method includes selectively etching through an n-type layer using a mask to form the raised regions and implanting p-type dopants into exposed surfaces of an underlying n-type layer using the mask.
摘要:
A method of making a semi-insulating epitaxial layer includes implanting a substrate or a first epitaxial layer formed on the substrate with boron ions to form a boron implanted region on a surface of the substrate or on a surface of the first epitaxial layer, and growing a second epitaxial layer on the boron implanted region of the substrate or on the boron implanted region of the first epitaxial layer to form a semi-insulating epitaxial layer.
摘要:
A vertical junction field effect transistor (VJFET) having a self-aligned pin, a p+/n/n+ or a p+/p/n+ gate-source junction is described. The device gate can be self-aligned to within 0.5 μm to the source in order to maintain good high voltage performance (i.e. low DIBL) while reducing gate-source junction leakage under reverse bias. The device can be a wide-bandgap semiconductor device such as a SiC vertical channel junction field effect. Methods of making the device are also described.
摘要翻译:描述了具有自对准引脚,p + / n / n +或p + / p / n +栅 - 源极结的垂直结型场效应晶体管(VJFET)。 为了保持良好的高电压性能(即低DIBL),器件栅极可以自对准至0.5μm以内,同时减少反向偏压下的栅 - 源结泄漏。 该器件可以是宽带隙半导体器件,例如SiC垂直沟道结场效应。 还描述了制造该装置的方法。
摘要:
Semiconductor devices and methods of making the devices are described. The devices can be junction field-effect transistors (JFETs) or diodes such as junction barrier Schottky (JBS) diodes or PiN diodes. The devices have graded p-type semiconductor layers and/or regions formed by epitaxial growth. The methods do not require ion implantation. The devices can be made from a wide-bandgap semiconductor material such as silicon carbide (SiC) and can be used in high temperature and high power applications.