摘要:
Method and computer-readable medium embodiments provide for sourcing current to a series of light-emitting diodes in a plurality of series of light-emitting diodes. A method comprises generating a current, sequentially and separately switching the current to each of the series of light-emitting diodes in the plurality of series of light-emitting diodes for a corresponding period of time, and predicting an output voltage across a selected series of light-emitting diodes using a plurality of parameters stored in a memory.
摘要:
Representative embodiments of the invention provide a system, apparatus, and method of controlling an intensity and spectrum of light emitted from a solid state lighting system. The solid state lighting system has a first emitted spectrum at a full intensity level and at a selected temperature, with a first electrical biasing for the solid state lighting system producing a first wavelength shift, and a second electrical biasing for the solid state lighting system producing a second, opposing wavelength shift. Representative embodiments provide for receiving information designating a selected intensity level or a selected temperature; and providing a combined first electrical biasing and second electrical biasing to the solid state lighting system to generate emitted light having the selected intensity level and having a second emitted spectrum within a predetermined variance of the first emitted spectrum over a predetermined range of temperatures.
摘要:
Method and computer-readable medium embodiments provide for sourcing current to a series of light-emitting diodes in a plurality of series of light-emitting diodes. A method comprises generating a current, sequentially and separately switching the current to each of the series of light-emitting diodes in the plurality of series of light-emitting diodes for a corresponding period of time, and predicting an output voltage across a selected series of light-emitting diodes using a plurality of parameters stored in a memory.
摘要:
An exemplary apparatus embodiment provides a plurality of operating modes for solid state lighting, such as a flash mode and a constant or background lighting mode for use with devices such as cameras. An exemplary apparatus comprises a memory adapted to store a plurality of average current parameters; and a controller adapted to modulate an energizing cycle time period (“T”) for providing power to the solid state lighting as proportional to the product of the selected average current parameter (“a”) and a reset time period (“TR”) for an inductor current to return to a substantially zero level from a predetermined peak level (T∝a·TR). The average current parameter is predetermined as substantially proportional to a ratio of a peak inductor current level (“IP”) to an average output D.C. current level ( “ I O ” ) ( a ∝ I P I O ) .
摘要翻译:示例性装置实施例提供用于固态照明的多种操作模式,诸如闪光模式和用于诸如相机的装置的恒定或背景照明模式。 示例性装置包括适于存储多个平均电流参数的存储器; 以及控制器,适于调制与所选择的平均当前参数(“a”)和复位时间段(“TR”)的乘积成比例的向固态照明提供电力的通电周期时间段(“T”), 使电感电流从预定的峰值电平(Tαa·TR)返回到基本上为零电平。 平均电流参数被预先确定为与峰值电感器电流电平(“IP”)与平均输出直流电流水平(“I O”)(aαI P I O)的比率成正比。
摘要:
Exemplary embodiments provide an apparatus, system and method for power conversion to provide power to solid state lighting, and which may be coupled to a first switch, such as a dimmer switch. An exemplary system for power conversion comprises: a switching power supply comprising a second, power switch; solid state lighting coupled to the switching power supply; a voltage sensor; a current sensor; a memory; a first adaptive interface circuit to provide a resistive impedance to the first switch and conduct current from the first switch in a default mode; a second adaptive interface circuit to create a resonant process when the first switch turns on; and a controller to modulate the second adaptive interface circuit when the first switch turns on to provide a current path during the resonant process of the switching power supply.
摘要:
A system drives one or plurality of LEDs, regulating their brightness by controlling LEDs average current or voltage. The system includes a switching power converter and an integrated digital regulator with at least one of electrical, thermal and optical feedbacks. The regulator is constructed as a hysteretic peak current mode controller for continuous mode of operation of the power converter. For discontinuous mode of operation of the power converter a pulse averaging sliding mode control is being used. Average LED current is measured by integrating LED pulse current at off time and hysteretically adjusting on time of the power switch. Input battery is protected from discharging at abnormally low impedance of the output.
摘要:
An apparatus, method and system are provided for power conversion to supply power to a load such as a plurality of light emitting diodes. An exemplary apparatus comprises: a first power converter stage having a first power switch and a first inductive element; a second power converter stage having a second power switch and a second inductive element; a plurality of sensors; and a controller. The second power converter stage provides an output current to the load. The controller is adapted to use a sensed input voltage to determine a switching period, and is further adapted to turn the first and second power switches into an on-state at a frequency substantially corresponding to the switching period while maintaining a switching duty cycle within a predetermined range.
摘要:
An apparatus method and system are provided for power conversion, to supply power to a nonlinear load such as a plurality of light emitting diodes. An exemplary apparatus comprises a first power converter stage, a second power converter stage, a plurality of sensors such as first and second sensors, and a controller. The first power converter stage includes a power switch and a first inductor having a first inductance. The first and second sensors are both coupled to a common reference node, with the first sensor adapted to sense a first parameter of the first power converter stage, and the second sensor adapted to sense the output current level. The second power converter stage includes a second inductor having a second inductance, and is coupleable to provide an output current to the nonlinear load such as LEDs. The controller is coupled to the power switch, the first sensor and the second sensor, and the controller is adapted to turn the power switch into an on state for an on-time duration substantially proportional to a ratio of the second inductance to the first inductance.
摘要:
A power converter delivers electrical power from an electrical power source to a load according to a plurality of operation modes corresponding to different levels of input voltage or output current. The power converter comprises a power stage for delivering the electrical power from the power source to the load, a switch in the power stage that electrically couples or decouples the load to the power source, and a switch controller coupled to the switch for controlling the on-times and off-times of the switch according to the plurality of operation modes. Each of the operation modes correspond to associated ranges of at least one of an input voltage to the power converter and an output current from the power converter, where the associated ranges are different for each of the operation modes.
摘要:
A power converter delivers electrical power from an electrical power source to a load according to a plurality of operation modes corresponding to different levels of input voltage or output current. The power converter comprises a power stage for delivering the electrical power from the power source to the load, a switch in the power stage that electrically couples or decouples the load to the power source, and a switch controller coupled to the switch for controlling the on-times and off-times of the switch according to the plurality of operation modes. Each of the operation modes correspond to associated ranges of at least one of an input voltage to the power converter and an output current from the power converter, where the associated ranges are different for each of the operation modes.