Abstract:
Disclosed is an exhaust valve capable of correctly opening/shutting an exhaust port of a cylinder based upon variation of the flux density of an electromagnet. The inventive exhaust valve may comprise a guide connected in parallel to an exhaust port of a cylinder, a needle valve provided inside the guide for opening/shutting the exhaust port while moving in cooperation with the guide. The needle valve may be controlled with an electromagnet. The invention enables complete opening of the exhaust port of the cylinder in exhaustion thereby preventing degradation of compression efficiency due to valve damage while reducing generation of vibration and noise.
Abstract:
A concentration cooling apparatus for a refrigerator, including a housing which is respectively mounted in one or more cold air guiding paths formed on a side wall of the chilling chamber to guide cold air to the side wall of the chilling chamber, a nozzle which is rotatably supported in the housing, for concentratedly injecting cold air to a region where a high temperature load is occurred in the chilling chamber, a temperature sensor which is mounted at the front of the nozzle, for sensing the region where the high temperature load is occurred, rotating together with the nozzle, and a nozzle driving portion for rotating the nozzle up and down as well as in the circumferential direction of the nozzle, can swiftly maintain a temperature inside of a chilling chamber as a uniform temperature by concentratedly discharging cold air into a region where a high temperature load is occurred inside the chilling chamber.
Abstract:
An apparatus and a method for controlling a concentrated cooling of a refrigerator for discharging cool air to a region where a load of high temperature is generated when the load is generated on a certain region in a cooling chamber due to receipt of food or opening of door comprises: a step of performing normal operation; a step of deciding whether the operating time reaches to a set time by counting the time; a step of blocking main discharge of cool air and detecting the load of high temperature by scanning, if it is decided that the set time is reached; and a step of rotating the nozzle to the region of the load and injecting cool air for a predetermined time, if the load of high temperature is detected in above step.
Abstract:
The invention relates to a cool air controlling apparatus for concentrically cooling a region in a refrigerator where a new load is stored. The apparatus comprises: the first cool air duct provided along a compartment wall of a refrigerator with a certain length for allowing the cool air introduced from a blowing chamber to flow therethrough; the second cool air duct having a variable length provided downward from a front end of the first cool air duct; length adjusting means connected to the second cool air duct for adjusting the length of the second cool air duct; and rotation adjusting means attached to a lower end of the second cool air duct for carrying out rotation and injecting the cool air. The entire temperature distribution is uniformly maintained in a refrigerating chamber thereby greatly reducing power consumption.
Abstract:
The invention relates to a crank shaft having a guide groove allowing the movement of a crank pin so as to adjust the reciprocating distance of a piston according to the rotating direction. The crank shaft comprises a rotation shaft for inducing the rotating movement; and a crank arm connected to the rotation shaft at the center and having at one side a guide groove provided horizontal in the radial direction for allowing free movement of a crank pin and elastic means provided within the guide groove to enhance the performance of sucking and compressing fluid.Accordingly, smooth and soft compression is enabled to prevent the overpressure loss. Also, the sucking performance is improved by using additional retreat due to the elastic means.
Abstract:
A concentration cooling apparatus of a refrigerator including housings respectively installed to cold air guide path formed at the side wall of a chilling chamber; a nozzle rotatably supported by the housings and jetting cold air intensively to a high-temperature load occurred region; a nozzle support member arranged with a certain distance from the outer circumference of the nozzle, connected to the nozzle through a connection rod extended from the both sides of the nozzle; an infrared temperature sensor installed on the front of the nozzle; a first driving unit for rotating the nozzle in the circumferential direction by rotating the nozzle support member; and a second driving unit for rotating the nozzle up and down by rotating the connection rod rotated according to the rotation direction of the nozzle, thereby discharging cold air intensively onto a high temperature load occurred region, cooling instantly the high temperature load.
Abstract:
In a cold air supply apparatus of a refrigerator, by forming a cold air path for discharging cold air from the rear and side surfaces of a chilling chamber to distribute cold air from the rear and side surfaces of the chilling chamber selectively by using a damper, the apparatus includes a cold air discharge duct installed at the upper portion of a chilling chamber; a side cold air path connected with a certain side of the cold air discharge duct, formed at the side wall of the chilling chamber and guiding cold air to the side of the chilling chamber; and a damper installed on a certain side of the cold air discharge duct in order to open/close the cold air supply hole, the side cold air path and both the side cold air path and the cold air discharge duct selectively.
Abstract:
In a concentrated cooling apparatus and a refrigerator having the same capable of performing cooling operation instantly by discharging intensively cold air to a high-temperature load occurred region inside a chilling chamber, a concentrated cooling apparatus of a refrigerator includes housings respectively installed to at least one cold air guide path formed at the side wall of a chilling chamber in order to guide cold air to the side wall of the chilling chamber; a nozzle rotatively supported by the housings and jetting cold air intensively to a high-temperature load occurred region inside the chilling chamber when the high temperature load occurs at the certain region; a temperature sensor installed on the front of the nozzle, rotating with the nozzle and sensing the high-temperature load occurred region; and a nozzle driving unit installed at a certain side of the housings to rotate the nozzle.
Abstract:
The present invention relates to an optical coherence tomography device and an optical coherence tomography method using same for capturing the cornea and the retina of the eye by using light sources in respectively different wavelength ranges. According to the present invention, included are two light sources, a first interferometer and a second interferometer for generating respectively different interference patterns by the light outputted from each of the light sources, and interference pattern detection means for detecting an interference pattern occurring in each interferometer.
Abstract:
A concentrated cooling apparatus of a refrigerator is capable of improving the reliability of an infrared sensor by preventing moisture from being condensed onto the surface of the infrared sensor. The concentrated cooling apparatus includes a nozzle rotationally supported by a cold air guide path, the nozzle intensively jetting cold air to a high-temperature load region when a high-temperature load is placed inside a chilling chamber of the refrigerator. An infrared sensor is installed at the front of the nozzle, and the infrared sensor senses the high-temperature load region while being rotated together with the nozzle. A moisture removing device is formed at a side of the nozzle, the moisture removing device jetting cold air on the surface of the infrared sensor to remove moisture condensed on the surface of the infrared sensor.