Abstract:
The present invention relates to a polymer memory device and to a production method for the same, and relates to a novel photocrosslinkable polymer compound able to be used in a polymer memory device, to a novel non-volatile memory device in which an active layer between an upper electrode and a lower electrode comprises a photocrosslinkable polyimide polymer, and to a production method for the same. In the polymer memory device, the photocrosslinkable polyimide polymer is used as an active layer.
Abstract:
A plasma display panel and a multi plasma display panel are disclosed. The plasma display panel includes a front substrate, a back substrate positioned opposite the front substrate, a barrier rib positioned between the front substrate and the back substrate to partition a discharge cell, and a seal portion positioned outside the barrier rib in an area between the front substrate and the back substrate. A distance between the barrier rib and the seal portion on one side of the plasma display panel is different from a distance between the barrier rib and the seal portion on the other side of the plasma display panel opposite the one side.
Abstract:
A plasma display panel and a multi plasma display panel are disclosed. The multi plasma display panel includes a plurality of plasma display panels that are positioned adjacent to one another. Each of the plurality of plasma display panels includes a front substrate, a back substrate positioned opposite the front substrate, and a plurality of barrier ribs positioned between the front substrate and the back substrate. The plurality of barrier ribs partition a plurality of discharge cells. A size of a discharge cell in a boundary portion between two plasma display panels of the plurality of plasma display panels is greater than a size of a discharge cell in other portions.
Abstract:
A method and system for determining whether a given electromagnetic frequency is in use includes applying a transformation to an amplitude of received samples, adjusting the transformed samples by a constant based on a minimum detection signal-to-noise ratio; combining the adjusted samples to produce a test statistic; and using a processor to make a determination regarding if the frequency is in use based on the test statistic exceeded or falling below a threshold, said test statistic being based on Ξq=Σi=1q×L(|ri|2−Δ), where q is the block index, ri is the ith received sample, and Δ is the constant.
Abstract translation:一种用于确定给定电磁频率是否在使用中的方法和系统包括将变换应用于接收样本的振幅,基于最小检测信噪比将变换的样本调整一个常数; 结合调整后的样本产生检验统计量; 并且使用处理器基于超过或低于阈值的测试统计量来确定是否使用频率,所述测试统计量基于&Xgr; i = 1q×L(| ri | 2- &Dgr;),其中q是块索引,ri是第i个收集的样本,&Dgr; 是常数。
Abstract:
A plasma display panel and a multi plasma display panel are disclosed. The multi plasma display panel includes a plurality of plasma display panels that are positioned adjacent to one another. Each of the plurality of plasma display panels includes a front substrate, a back substrate positioned opposite the front substrate, and a plurality of barrier ribs positioned between the front substrate and the back substrate. The plurality of barrier ribs partition a plurality of discharge cells. A size of a discharge cell in a boundary portion between two plasma display panels of the plurality of plasma display panels is greater than a size of a discharge cell in other portions.
Abstract:
Spectrum sensing methods and systems for detecting spectrum holes for use in cognitive radio secondary transmissions are disclosed. In one method, an indication of an assignment of a set of subcarriers to a primary user is received. The method further includes determining multitaper spectral estimates for at least a subset of the set of subcarriers based on the assignment of the set of subcarriers to the primary user by processing samples for the at least a subset of the set of subcarriers. In addition, a test statistic that is based on the multitaper spectral estimates is compared to a threshold to determine whether the set of subcarriers is utilized for primary transmissions to the primary user. Moreover, data signals are received on at least one of the subcarriers in the set of subcarriers if the set of subcarriers is not utilized for primary transmissions to the primary user.
Abstract:
A plasma display panel and a multi plasma display panel are disclosed. The plasma display panel includes a front substrate, a back substrate positioned opposite the front substrate, a barrier rib positioned between the front substrate and the back substrate to partition a discharge cell, and a seal portion positioned outside the barrier rib in an area between the front substrate and the back substrate. A distance between the barrier rib and the seal portion on one side of the plasma display panel is different from a distance between the barrier rib and the seal portion on the other side of the plasma display panel opposite the one side.
Abstract:
A multi plasma display panel is disclosed. The multi plasma display panel includes a plurality of plasma display panels positioned adjacent to one another, each of the plurality of plasma display panels including, a front substrate on which a first electrode is positioned, a rear substrate on which a second electrode crossing the first electrode is positioned, a barrier rib between the front substrate and the rear substrate, the barrier rib providing a plurality of discharge cells, and an exhaust hole on the rear substrate. The exhaust hole is formed in at least one of the plurality of discharge cells. A size of a discharge cell in which the exhaust hole is formed is greater than a size of at least one discharge cell in which the exhaust hole is not formed.
Abstract:
In accordance with aspects of the present principles, the quality of voice traffic and bandwidth utilization for data communication over a wireless multi-hop network may be improved. In an implementation of the present principles, a data packet transmission rate over a wireless multi-hop network may be controlled at an interface between the multi-hop network and a wired network based on a voice packet quality measure calculated from network parameters. Voice and data traffic quality and efficiency may be further improved by reordering a packet transmission queue at the interface to avoid timeout and/or varying a packet queue length at the interface using an acknowledgement window transmitted to a data packet sender.
Abstract:
This invention relates to a method of manufacturing a DRAM cell which has a stacked capacitor and forming drain and source polycrystalline silicon regions on surface of a semiconductor substrate. The invention is directed to: a first step for forming a field oxide film and channel stopper as well as a polycrystalline silicon oxide film doped with impurities; a second step for dividing said silicon into a drain and source polycrystalline silicon region and forming a gate oxide film between the two silicon regions simultaneously with the drain and source diffusion regions and a gate electrode on the gate nitride film; a third step for forming an insulating film on the upper surface of the nitride film and a window on the source polycrystalline silicon region, a storage poly contacting with the same through the window; a fourth step for forming a dielectric layer and a plate poly of the stacked capacitor; and a fifth step forming another insulating film thereon and forming a window on the drain polycrystalline silicon region and also forming a bit line contacting with the exposed drain polycrystalline silicon region through that window. This invention can prevent the generation of leakage current resulting from the damage caused by the drain and source diffusion polycrystalline silicon regions when an etching process is used for the formation of the storage poly and the bit line.