Abstract:
This invention relates to a method of manufacturing a DRAM cell which has a stacked capacitor and forming drain and source polycrystalline silicon regions on surface of a semiconductor substrate. The invention is directed to: a first step for forming a field oxide film and channel stopper as well as a polycrystalline silicon oxide film doped with impurities; a second step for dividing said silicon into a drain and source polycrystalline silicon region and forming a gate oxide film between the two silicon regions simultaneously with the drain and source diffusion regions and a gate electrode on the gate nitride film; a third step for forming an insulating film on the upper surface of the nitride film and a window on the source polycrystalline silicon region, a storage poly contacting with the same through the window; a fourth step for forming a dielectric layer and a plate poly of the stacked capacitor; and a fifth step forming another insulating film thereon and forming a window on the drain polycrystalline silicon region and also forming a bit line contacting with the exposed drain polycrystalline silicon region through that window. This invention can prevent the generation of leakage current resulting from the damage caused by the drain and source diffusion polycrystalline silicon regions when an etching process is used for the formation of the storage poly and the bit line.
Abstract:
Systems and methods for detecting unused channels in a cognitive radio system are described. In one method, data is communicated on a particular channel for a secondary receiver. In addition, a set of channels is iteratively scanned by collecting samples for each channel and for each iteration of the scanning. Here, iterations of the scanning progressively removes channels from the set of channels based on the collected samples and updates states of the channels in the set based on the collected samples to obtain a set of candidate channels. In response to detecting a pre-determined condition, communications on the particular channel are precluded and at least one of the candidate channels is evaluated by collecting additional samples on each of the channels. Further, at least one of the candidate channels is selected based on the evaluation for utilization by the one or more secondary receivers for data communication.
Abstract:
A multi plasma display panel is disclosed. The multi plasma display panel includes a plurality of plasma display panels positioned adjacent to one another, each of the plurality of plasma display panels including, a front substrate on which a first electrode is positioned, a rear substrate on which a second electrode crossing the first electrode is positioned, a barrier rib between the front substrate and the rear substrate, the barrier rib providing a plurality of discharge cells, and an exhaust hole on the rear substrate. The exhaust hole is formed in at least one of the plurality of discharge cells. A size of a discharge cell in which the exhaust hole is formed is greater than a size of at least one discharge cell in which the exhaust hole is not formed.
Abstract:
A fan system includes a motor; a driven fan, driven by the motor; and a dummy fan, freely rotatable around a bearing support shaft. The fans have blade rings at their external surfaces. The blade rings include gears, engaged with each other such that rotation of the driven fan rotates the dummy fan.
Abstract:
The present invention relates to a polymer memory device and to a production method for the same, and relates to a novel photocrosslinkable polymer compound able to be used in a polymer memory device, to a novel non-volatile memory device in which an active layer between an upper electrode and a lower electrode comprises a photocrosslinkable polyimide polymer, and to a production method for the same. In the polymer memory device, the photocrosslinkable polyimide polymer is used as an active layer.
Abstract:
A plasma display panel and a multi plasma display panel are disclosed. The plasma display panel includes a front substrate, a back substrate positioned opposite the front substrate, a barrier rib positioned between the front substrate and the back substrate to partition a discharge cell, and a seal portion positioned outside the barrier rib in an area between the front substrate and the back substrate. A distance between the barrier rib and the seal portion on one side of the plasma display panel is different from a distance between the barrier rib and the seal portion on the other side of the plasma display panel opposite the one side.
Abstract:
A plasma display panel and a multi plasma display panel are disclosed. The multi plasma display panel includes a plurality of plasma display panels that are positioned adjacent to one another. Each of the plurality of plasma display panels includes a front substrate, a back substrate positioned opposite the front substrate, and a plurality of barrier ribs positioned between the front substrate and the back substrate. The plurality of barrier ribs partition a plurality of discharge cells. A size of a discharge cell in a boundary portion between two plasma display panels of the plurality of plasma display panels is greater than a size of a discharge cell in other portions.
Abstract:
A method and system for determining whether a given electromagnetic frequency is in use includes applying a transformation to an amplitude of received samples, adjusting the transformed samples by a constant based on a minimum detection signal-to-noise ratio; combining the adjusted samples to produce a test statistic; and using a processor to make a determination regarding if the frequency is in use based on the test statistic exceeded or falling below a threshold, said test statistic being based on Ξq=Σi=1q×L(|ri|2−Δ), where q is the block index, ri is the ith received sample, and Δ is the constant.
Abstract translation:一种用于确定给定电磁频率是否在使用中的方法和系统包括将变换应用于接收样本的振幅,基于最小检测信噪比将变换的样本调整一个常数; 结合调整后的样本产生检验统计量; 并且使用处理器基于超过或低于阈值的测试统计量来确定是否使用频率,所述测试统计量基于&Xgr; i = 1q×L(| ri | 2- &Dgr;),其中q是块索引,ri是第i个收集的样本,&Dgr; 是常数。
Abstract:
The present invention relates to a polymer memory device and to a production method for the same, and relates to a novel photocrosslinkable polymer compound able to be used in a polymer memory device, to a novel non-volatile memory device in which an active layer between an upper electrode and a lower electrode comprises a photocrosslinkable polyimide polymer, and to a production method for the same. In the polymer memory device, the photocrosslinkable polyimide polymer is used as an active layer.
Abstract:
Spectrum sensing methods and systems for detecting spectrum holes for use in cognitive radio secondary transmissions are disclosed. In one method, an indication of an assignment of a set of subcarriers to a primary user is received. The method further includes determining multitaper spectral estimates for at least a subset of the set of subcarriers based on the assignment of the set of subcarriers to the primary user by processing samples for the at least a subset of the set of subcarriers. In addition, a test statistic that is based on the multitaper spectral estimates is compared to a threshold to determine whether the set of subcarriers is utilized for primary transmissions to the primary user. Moreover, data signals are received on at least one of the subcarriers in the set of subcarriers if the set of subcarriers is not utilized for primary transmissions to the primary user.