Abstract:
Included are, a module fixing body having a plurality of mounting holes into which laser modules are fitted and accommodated, respectively; an electricity-supplying member having an end provided with electricity-supplying terminals, which are connected to electricity-receiving terminals of the laser module accommodated in the mounting hole; and a cooling member that cools each of the laser modules. A groove in which the electricity-supplying member is accommodated is formed in a surface of the module fixing body, and the cooling member is closely arranged on the surface of the module fixing body.
Abstract:
An optical-system driving device is achieved that can switch over between objective lenses and is space-saving, lightweight, and simply-configured. An optical-system driving device for recording information onto or playing it back from an optical storage medium, includes a stationary unit having a rotation axis; a movable unit pivotable about the rotation axis; pivotal movement means for pivotally moving the movable unit about the rotation axis; and the movable unit includes a holder having a plurality of optical means that is able to focus a beam of light onto the optical storage medium, and a plurality of conductive elastic members for supporting the holder, wherein an optical axis of each of the plurality of optical means is located substantially equidistant from the rotation axis, and the optical means for focusing the beam of light onto the optical storage medium is selected by pivotally moving the movable unit with the rotation means.
Abstract:
A light source unit includes a laser element that includes a plurality of light emitting points that are arranged along one direction on an end face thereof and irradiates laser beams having a spread in a spreading direction that is perpendicular to the one direction. A cylindrical lens held by a first body tube collimates the laser beams in block. Circular lenses held by a second body tube condense the collimated beams into an inlet of an optical fiber. The first body part and the second body part are positioned and directly coupled to each other so that an optical axis of the cylindrical lens accords with that of the circular lenses.
Abstract:
An optical actuator according to this invention includes a focusing lens for focusing a laser beam on a information disk, a lens holder for holding the focusing lens, a focusing coil for driving the focusing lens in an axial direction of the laser beam, a tracking coil for driving the focusing lens in a radial direction of the information disk, a tilting coil for pivotally rotating the focusing lens on an axis along the tangential direction of the disk and a pair of supporting members each disposed on each opposing sides of the lens holder. Each of the supporting members having at least three fixing elements disposed in an approximately circular arc, and a plurality of linear elastic members are connected to each of the fixing elements.
Abstract:
Tracking coils are fixed on side surfaces of a lens holder and a magnetic substance of axisymmetric shape is fixed on a lower surface of the lens holder, being sandwiched by a focusing coil. Moreover, end portions of the magnetic substance are opposed to respective N-pole surfaces of permanent magnets serving as a focusing driving device and a tracking driving device together with the above coils. As a result, a neutral position holding system for an objective lens can be formed of these permanent magnets and the magnetic substance.
Abstract:
A laser output measuring apparatus in which an optical separator is disposed in a position that is rotated by a predetermined angle about an optical axis of a laser beam converged by a lens, and further rotated by a predetermined angle about the optical axis of the laser beam and a straight line perpendicular to an incident surface of the laser beam.
Abstract:
A light source apparatus includes an outer casing. A light source member and a light source module having a cooling body which cools the light source member are disposed in the outer casing. A wind tunnel which surrounds a heat pipe unit as the cooling body of the light source module is provided in the outer casing. The wind tunnel includes a wind passage which allows cooling wind to pass through the heat pipe unit. An intake-opening is formed in a surface of the outer casing, and cooling wind is taken into the outer casing from outside thereof through the intake-opening. One end of the wind passage of the wind tunnel is connected to the intake-opening.
Abstract:
Included are a plurality of cylindrical holders having holes into which laser modules are fitted and fixed, respectively; a plate-like base that has a first surface, a second surface opposite to the first surface, and a plurality of through holes through which the laser beams from the plurality of laser modules fixed to the holder pass, the holders abutting against the first surface so as to connect the holes thereof to the through holes of the base, the second surface of the base being arranged with a plurality of lenses corresponding to the through holes; and adhesives applied to outer corners of abutment portions, at which the base and the LD holders abut against each other, for fixing the base and the LD holders to each other.
Abstract:
An objective lens driving apparatus includes an objective lens (13) collecting a light flux emitted from a light source on a optical disk (11), and a lens holder (14) holding the objective lens (13). The lens holder (14) includes a first bonding portion (14i) and a second bonding portion (14j) for holding the objective lens (13) by means of bonding. The objective lens (13) is fixed to the lens holder (14) by applying a first bonding adhesive (25) to the first bonding portion (14i) to thereby bond the objective lens (13) thereto, adjusting an inclination of an optical axis of the objective lens (13) while causing the first bonding adhesive (25) to deform, and applying a second bonding adhesive (26) to the second bonding portion (14j). The second bonding adhesive (26) has a larger Young's modulus after curing than the first bonding adhesive (25).
Abstract:
An objective lens driving apparatus is used for accurately positioning an abject to focus a light spot on an optical recording medium. A lens holder holds the objective lens and has a bearing hole through which a shaft extends in a direction parallel to the optical axis so that the lens holder is rotatably supported on the shaft. Two magnets are supported on the lens holder so that the shaft is between the magnets. A base has two magnetic members disposed such that each of the two magnets exerts an attraction force on a corresponding one of the two magnetic members to urge the lens holder in a direction of the optical axis and in a direction perpendicular to the optical axis. A first coil set of first focusing and tracking coils and a second coil set of focusing and tracking coils are mounted to the two magnetic members.