Abstract:
An adjusting device having first and second extendable members includes a synchronizing mechanism for making adjustments of the first and second extendable members. Each of the first and second extendable members defines an extension axis and includes an extendable portion adjustable along the extension axis to an extended length. The synchronizing mechanism is connected to the first and second extendable members and is operable to simultaneously adjust an extended length of the first and second extendable portions such that the extended length of the first extendable portion and the extended length of the second extendable portion are substantially equal.
Abstract:
An adjusting device having first and second extendable members includes a synchronizing mechanism for making adjustments of the first and second extendable members. Each of the first and second extendable members defines an extension axis and includes an extendable portion adjustable along the extension axis to an extended length. The synchronizing mechanism is connected to the first and second extendable members and is operable to simultaneously adjust an extended length of the first and second extendable portions such that the extended length of the first extendable portion and the extended length of the second extendable portion are substantially equal.
Abstract:
A gripper formed as a single component includes a hoop portion connecting facing arms. Each arm may have a tang end, a jaw end and a pivot intermediate the tang and jaw ends and be attached to the hoop portion at the pivot to be pivotable to change the size of a jaw opening defined by the jaw ends. The hoop portion is cyclically loaded in use and configured to act as a stress concentrator for the gripper and provide a failure point for consistently initiating a failure crack in the hoop portion at time of failure of the gripper. Each of the facing arms is attachable to a base such that at failure, the fractured portions of the gripper are retained to the base.
Abstract:
A gripper formed as a single component includes a hoop portion connecting facing arms. Each arm may have a tang end, a jaw end and a pivot intermediate the tang and jaw ends and be attached to the hoop portion at the pivot to be pivotable to change the size of a jaw opening defined by the jaw ends. The hoop portion is cyclically loaded in use and configured to act as a stress concentrator for the gripper and provide a failure point for consistently initiating a failure crack in the hoop portion at time of failure of the gripper. Each of the facing arms is attachable to a base such that at failure, the fractured portions of the gripper are retained to the base.
Abstract:
A gear box includes an output shaft defining multiple output drivers and includes a plurality of gear sets having the same diametral pitch. A common input shaft is operatively attached to each of the plurality of gear sets such that the gear sets rotate continuously and concurrently with rotation of the input shaft. Each of the output drivers is operatively attached to the output shaft and rotatably driven by a respective one of the plurality of gear sets. The multiple output drivers share a common axis of rotation with the output shaft. The output speed of the gear box may be changed by disconnecting one of the output drivers from a driven device and reconnecting another one of the output drivers to the driven device. The output speed of the gear box may be changed without having to disengage and/or change out any of the gears in the gear box.
Abstract:
A driver for coupling a driving device and a driven device includes a core defining a plurality of corner chamfers and a casing formed on and encasing the core. The casing has a contoured perimeter surface and a variable casing thickness, and is compressible during an interference fit installation to a coupling socket to provide a non-lubricated coupling which has zero backlash and substantially no running noise. The core is made of a metal-based material and includes a shaft bore for receiving an input shaft. In an illustrative example, the driver core is made of a stainless steel core and the casing is made of a high wear thermoset urethane material. The metal core can be recycled from the coated driver by removal of the polymeric casing, then recoated with a new casing to form a new coated driver including the recycled metal core.
Abstract:
A packaging system and method forms a bundled group of articles in an oriented arrangement, by applying a wrapping material to the articles via the bottoms of the articles while the oriented arrangement of articles is inverted and retained by a pallet. The wrapping material may be a sleeve of shrinkable material applied to the inverted end of the articles and shrunk to conform to the articles and form a base enclosing the bottoms of the articles. The articles are retained by the pallet in the oriented arrangement during the inverting, sleeving and bundling of the group of articles, to provide a bundled group including the articles securely contained by the shrunk wrapping in the oriented arrangement. The bundled group may include more than one type of article. The pallet may be configured to retain a top portion of the article, which may have an irregular or asymmetrical shape.
Abstract:
A gear box includes an output shaft defining multiple output drivers and includes a plurality of gear sets having the same diametral pitch. A common input shaft is operatively attached to each of the plurality of gear sets such that the gear sets rotate continuously and concurrently with rotation of the input shaft. Each of the output drivers is operatively attached to the output shaft and rotatably driven by a respective one of the plurality of gear sets. The multiple output drivers share a common axis of rotation with the output shaft. The output speed of the gear box may be changed by disconnecting one of the output drivers from a driven device and reconnecting another one of the output drivers to the driven device. The output speed of the gear box may be changed without having to disengage and/or change out any of the gears in the gear box.
Abstract:
A gear box includes an output shaft defining multiple output drivers and includes a plurality of gear sets having the same diametral pitch. A common input shaft is operatively attached to each of the plurality of gear sets such that the gear sets rotate continuously and concurrently with rotation of the input shaft. Each of the output drivers is operatively attached to the output shaft and rotatably driven by a respective one of the plurality of gear sets. The multiple output drivers share a common axis of rotation with the output shaft. The output speed of the gear box may be changed by disconnecting one of the output drivers from a driven device and reconnecting another one of the output drivers to the driven device. The output speed of the gear box may be changed without having to disengage and/or change out any of the gears in the gear box.
Abstract:
An adjusting device for making x-y adjustments of a repositionable member from a single point includes first and second extendable members each defining an extension axis and including an extension rod, an extendable portion operatively attached to and adjustable relative to the extension rod along the extension axis to an extended length, and a clamping member attached to the extendable portion and configured to receive a rotatable member including the repositionable member. The clamping members define a rotation axis perpendicular to the extension axes and are lockable to prevent rotation of the rotatable member around the rotation axis. The adjusting device includes a synchronizing mechanism connected to the first and second extendable members and operable to simultaneously adjust the extended length of the first and second extendable portions such that the extended length of the first extendable portion and the extended length of the second extendable portion are equal.