摘要:
The present invention relates to a process for the production of catalysts, particularly of Ziegler-Natta type of catalysts for olefin polymerisation, to the catalysts as such, and to their use in polymerising olefins.
摘要:
The invention is directed to a process for producing an olefin polymerization catalyst wherein a solution of a soluble magnesium complex containing an element of is Group 13 or 14 of the Periodic Table (IUPAC) is contacted with a halogen containing transition metal compound of Group 3 to 10 of the Periodic Table (IUPAC) to obtain a solid catalyst complex comprising as essential components Mg, said element of is Group 13 or 14 of the Periodic Table (IUPAC) and said transition metal compound.
摘要:
The invention is directed to a process for producing a particulate support for an olefin polymerisation catalyst wherein a solution of a magnesium compound is contacted with a solution of an element of Group (13 or 14) of the Periodic Table (IUPAC) to obtain a solid reaction product. In the process of the invention the solid reaction product is formed by: i) contacting (a) a solution of a magnesium hydrocarbyloxy compound with (b) a solution of a halogen-containing compound of an element of Group (13 or 14) of the Periodic Table (IUPAC); and ii) recovering the solidified reaction product from the reaction mixture.
摘要:
Especially homogeneous supported Ziegler-Natta catalysts may be prepared in a simple one reaction vessel process from a magnesium hydrocarbyloxy starting material which is soluble in a hydrocarbon solvent. The process comprises: (I) reacting a magnesium hydrocarbyloxy compound with a chlorine-containing compound in a non-polar hydrocarbon solvent in which said magnesium hydrocarbyloxy compound is soluble whereby to produce a solution (A); and then either: (II) contacting the solution (A) with a chlorine containing tetravalent titanium compound to produce a solution (B); (III) impregnating solution (B) into a porous particulate support; or (II) impregnating solution (A) into a porous particulate support; and (III) contacting the solid support with a chlorine containing tetravalent titanium compound; or (II) impregnating solution (A) into a porous particulate support pretreated with a chlorine containing tetravalent titanium compound.
摘要:
The invention relates to a method for the preparation of a supported procatalyst intended for the polymerization of olefins, in which particles are formed from magnesium halide and alcohol, the particles are reacted with an organometallic compound of any of the metals of the groups I to III, the thus obtained particulate product is activated by means of a titanium(IV) compound, and optionally a prepolymerization is carried out for the activated particles. A problem with this kind of a method is, how to form particles from magnesium dihalide and alcohol having an advantageous structure for the polymerization of ethylene and particularly ethylene with a narrow molecular weight distribution. The problem has in the present invention been solved so that the particles are formed by spray-crystallizing a mixture of magnesium dihalide and alcohol to complex particles of magnesium dihalide and alcohol and that titanium(IV) alcoxyhalide has been used as the titanium compound. The catalytic properties of the particles thus obtained are improved, especially after the prepolymerization carried out by means of ethylene, which leads in the polymerization to a still more active, very hydrogen and comonomer sensible procatalyst having a better molecular weight selectivity.The invention also relates to the specific use of the procatalyst prepared by such a method for the polymerization of alpha-olefins. By a procatalyst is meant in this context the catalyst component of the Ziegler-Natta-catalyst which is based on the transition metal and which before the polymerization is combined with the organometallic compound of aluminium or some other metal acting as a cocatalyst.
摘要:
A process is disclosed for producing a multi-modal linear low density polyethylene in at least two staged reactors connected in series, comprising (i) polymerizing in a first slurry phase stage ethylene monomers with a Ziegler-Natta polymerization catalyst system to obtain a first polyethylene fraction component (A); and (ii) polymerizing in a second gas or slurry phase stage ethylene monomers with a Ziegler-Natta polymerization catalyst system to obtain a second polyethylene fraction component (B). The Ziegler-Natta polymerization catalyst system comprises: 1) a solid procatalyst formed by contacting at least: a) a Mg-alcoholate complex of formula (I) b) an aluminum compound of formula (II); and c) a vanadium compound and a titanium compound having a molar ratio (V:Ti) from 10:90 to 90:10; and 2) one or more organometallic cocatalvsts of formula (III). The linear low density polyethylene shows an improved comonomer composition distribution Formulas (I), (II), and (III) are described herein.
摘要:
The present invention provides a method for tailoring the molecular weight distribution of a multimodal (e.g. bimodal) ethylene polymer having a lower molecular weight component and a higher molecular weight component comprising polymerising ethylene and optionally at least one further alpha olefin in at least two stages, wherein at least one stage is carried out in a slurry phase in the presence of a Ziegler Natta catalyst comprising an electron donor which is an ether.
摘要:
A process for polymerizing olefins using a high activity catalyst. The catalyst utilize in the present process has a good balance in activity and can be used to carry out ethylene polymerization at high and low melt flow rates to produce low gel or gel free product.
摘要:
The invention relates to a process for the preparation of a high activity procatalyst for the production of ethylene polymers. The process according to the present invention comprises the following steps:(a) contacting the inorganic support with an alkyl metal chloride which is soluble in non-polar hydrocarbon solvents, and has the formula(R.sub.n MeCl.sub.3-n).sub.m (1)wherein R is a C.sub.1 -C.sub.20 aklyl group, Me is a metal of group III(13) of the periodic table, n=1 or 2 and m=1 or 2, to give a first reaction product,(b) contacting said first reaction product with a compound or mixture containing hydrocarbyl and hydrocarbyl oxide linked to magnesium which is soluble in non-polar hydrocarbon solvents, to give a second reaction product, and(c) contacting said second reaction product with a titanium compound which contains chlorine, having the formulaCl.sub.x Ti(OR.sup.IV).sub.4-x (2)wherein R.sup.IV is a C.sub.2 -C.sub.20 hydrocarbyl group and x is 3 or 4, to give said procatalyst.
摘要翻译:本发明涉及制备用于生产乙烯聚合物的高活性前催化剂的方法。 根据本发明的方法包括以下步骤:(a)使无机载体与可溶于非极性烃溶剂的烷基金属氯化物接触,并具有式(RnMeCl 3-n)m(1)其中R为 C 1 -C 20亚烷基,Me是周期表III(13)的金属,n = 1或2,m = 1或2,得到第一反应产物,(b)使所述第一反应产物与 与可溶于非极性烃溶剂的镁连接的烃基和烃基氧化物的化合物或混合物,得到第二反应产物,和(c)使所述第二反应产物与含有氯的钛化合物接触,所述钛化合物具有式Cl x Ti( ORIV)4-x(2)其中RIV为C 2 -C 20烃基,x为3或4,得到所述前催化剂。
摘要:
Ziegler-Natta catalyzed linear low density polyethylene which satisfies the following conditions:a) a density, according to ISO 1183, of from 900 to 925 kg/m3,b) a C4-C10-comonomer content, determined by Fourier transform infrared spectroscopy, of 1 to 16 wt %c) a weight average molecular weight Mw, determined by gel permeation chromatography, of at least 200 000,d) wherein the linear low density polyethylene comprises, by Crystallisation Analysis Fractionation (CRYSTAF) an amorphous fraction soluble at a temperature below 30° C. of at most 10 wt % and a fraction crystallising between 60 to 75° C. of at least 35 wt % ande) by temperature rising elution fractionation (TREF) analysis, at least 70 wt % of a crystallising polymer component having an elution temperature range from 60° C. to 94° C. and less than 10 wt % of a crystallising polymer component having an elution temperature range from 30° C. to 60° C. and,f) by Gel Permeation chromatography coupled with Fourier transform infrared spectroscopy detector (GPC-FTIR), a substantially constant short chain branching profile across the molecular weight distribution (MWD) org) by Gel Permeation chromatography coupled with Fourier transform infrared spectroscopy instruments (GPC-FTIR), a reverse short chain branching profile across the molecular weight distribution (MWD),the linear low density polyethylene being produced in the presence of a special Ziegler-Natta procatalyst and a halogenated aluminium alkyl cocatalyst of the formula (IV) (C1-C4- alkyl)m-Al-X3−m, wherein X is chlorine, bromine, iodine or fluorine and m is 1 or 2.