摘要:
A control system for a robotic device maneuverable in at least a liquid medium, the system having at least one visual sensor retrieving an image of the device's environment, an image analyzing module receiving the image, determining a presence of an object of a given type therein and analyzing at least one property of the object, a motion calculator determining a desired motion of the device based on the property, and a controller operating a propulsion system of the device to obtain the desired motion. Also, a legged robotic device having a control system including at least one sensor providing data about an environment of the device, the control system using sensor data to determine a desired motion of the device, determining a corresponding required leg motion of each of the legs to produce the desired motion and actuating the legs in accordance with the corresponding required leg motion.
摘要:
A control system for a wind turbine configured to generate an acoustic emission during operation includes a communication device. The communication device is configured to receive at least one penalty notification identifying a penalty to be assessed based on the acoustic emission generated. The control system also includes a processor coupled to the communication device. The processor is configured to calculate an acoustic emission level to be generated by the wind turbine based on the penalty and based on at least one of a power generated by the wind turbine and an economic value attributed to the wind turbine, and adjust at least one characteristic of the wind turbine to cause the wind turbine to operate at the calculated acoustic emission level.
摘要:
A method for operating a wind turbine with at least one blade includes providing at least one blade with an active flow control actuator configured to increase an angle of attack range in which the blade or blades can generate torque without flow separation, and using the flow control actuator to adjust this angle of attack range in accordance with load.
摘要:
The present disclosure relates to an approach by which low-performing turbines may be identified from among a plurality of wind turbines, such as may be present at a wind power plant. In accordance with one embodiment, low-performing turbines are identified from among pairs of turbines and based upon a comparison of the observed and expected performance of the turbines within each pair.
摘要:
A system for deicing a wind turbine blade includes an electrically powered active plasma actuator applied to a desired portion of a wind turbine blade. The activated plasma actuator energizes the air in the vicinity of the plasma actuator to increase the surface temperature of the wind turbine blade in the vicinity of the plasma actuator sufficiently to reduce or eliminate the collection of ice on a desired portion of the wind turbine blade.
摘要:
A system for deicing a wind turbine blade includes an electrically powered active plasma actuator applied to a desired portion of a wind turbine blade. The activated plasma actuator energizes the air in the vicinity of the plasma actuator to increase the surface temperature of the wind turbine blade in the vicinity of the plasma actuator sufficiently to reduce or eliminate the collection of ice on a desired portion of the wind turbine blade.
摘要:
A method for optimizing an operation of at least one wind turbine includes defining a plurality of test parameters that include a plurality of test points for at least one wind turbine operational parameter, wherein each test point includes a plurality of test values for the wind turbine operational parameter, and defining at least one test sequence of the plurality of test points. The method also includes initiating a test that executes the plurality of test points within the at least one randomized test sequence and measures at least one operating condition of the at least one wind turbine at each test point.
摘要:
A rotor blade assembly for a wind turbine and a method for increasing a loading capability of a rotor blade within a maximum load limit for a wind turbine are disclosed. The rotor blade assembly includes a rotor blade having surfaces defining a pressure side, a suction side, a leading edge, and a trailing edge extending between a tip and a root. The rotor blade assembly further includes an extension connected to a surface of the rotor blade, the extension having at least one design characteristic configured for increasing a loading capability of the rotor blade within a maximum load limit for the wind turbine. The design characteristic is one of extension length, extension width, extension curvature, span-wise extension location, chord-wise extension location, or extension angle with respect to a chord line of the rotor blade.
摘要:
A rotor blade assembly for a wind turbine and a method for increasing a loading capability of a rotor blade within a maximum load limit for a wind turbine are disclosed. The rotor blade assembly includes a rotor blade having surfaces defining a pressure side, a suction side, a leading edge, and a trailing edge extending between a tip and a root. The rotor blade assembly further includes an extension connected to a surface of the rotor blade, the extension having at least one design characteristic configured for increasing a loading capability of the rotor blade within a maximum load limit for the wind turbine. The design characteristic is one of extension length, extension width, extension curvature, span-wise extension location, chord-wise extension location, or extension angle with respect to a chord line of the rotor blade.
摘要:
A method for determining wind turbine location within a wind power plant based on at least one design criteria. A wind turbine layout including at least one wind turbine location is prepared and site conditions at each wind turbine location are determined. One or more plant design metrics are evaluated in response to the site conditions. The plant design metrics are analyzed in response to the site conditions. The method further includes applying constraints to the wind turbine layout and comparing the plant design metrics to the design criteria and constraints. Thereafter, the wind turbine locations are selectively adjusted within the layout in response to the comparing step until a stop criteria is reached.