摘要:
A system for deicing a wind turbine blade includes an electrically powered active plasma actuator applied to a desired portion of a wind turbine blade. The activated plasma actuator energizes the air in the vicinity of the plasma actuator to increase the surface temperature of the wind turbine blade in the vicinity of the plasma actuator sufficiently to reduce or eliminate the collection of ice on a desired portion of the wind turbine blade.
摘要:
A system for deicing a wind turbine blade includes an electrically powered active plasma actuator applied to a desired portion of a wind turbine blade. The activated plasma actuator energizes the air in the vicinity of the plasma actuator to increase the surface temperature of the wind turbine blade in the vicinity of the plasma actuator sufficiently to reduce or eliminate the collection of ice on a desired portion of the wind turbine blade.
摘要:
A deployable aerodynamic component configured to be mounted to a wind turbine. The wind turbine includes at least one rotor blade. The deployable aerodynamic component configured to be positioned in front of an inner portion of the at least one rotor blade, and is structurally configured to cover a substantial portion of the inner portion of the at least one rotor blade in a wind direction during deployment of the deployable aerodynamic component and to allow the passage therethrough of an incoming wind when non-deployed. Further described is a wind turbine including the above-described deployable aerodynamic component and method for aerodynamic performance enhancement of an existing wind turbine, wherein the method includes mounting the above-described deployable aerodynamic component to a wind turbine.
摘要:
A deployable aerodynamic component configured to be mounted to a wind turbine. The wind turbine includes at least one rotor blade. The deployable aerodynamic component configured to be positioned in front of an inner portion of the at least one rotor blade, and is structurally configured to cover a substantial portion of the inner portion of the at least one rotor blade in a wind direction during deployment of the deployable aerodynamic component and to allow the passage therethrough of an incoming wind when non-deployed. Further described is a wind turbine including the above-described deployable aerodynamic component and method for aerodynamic performance enhancement of an existing wind turbine, wherein the method includes mounting the above-described deployable aerodynamic component to a wind turbine.
摘要:
A method for actively manipulating a primary fluid flow over a surface using an active flow control system including an active fluid flow device to provide lift enhancement and lift destruction. The method including the disposing of an active fluid flow device in the surface. The active fluid flow device is then operated to generate at least one of a steady blowing secondary fluid flow, a pulsed secondary fluid flow or an oscillating secondary fluid flow. While flowing the primary fluid over the surface to create a primary flow field, a secondary fluid flow is injected in an upstream direction and substantially opposed to the incoming primary fluid flow. The injecting of the secondary fluid flow in this manner provides for influencing of the primary flow field by manipulating a momentum of the secondary fluid flow to influence the incoming primary fluid flow and resultant lift.
摘要:
A fuel nozzle assembly for use with a turbine engine includes at least one fuel conduit coupled to at least one fuel source. The fuel nozzle assembly also includes at least one swirler that includes at least one wall having a porous portion. The at least one wall is coupled to the at least one fuel conduit. The porous portion is formed from a material having a porosity that facilitates fuel flow therethrough. At least one fuel flow path is thereby defined through the porous portion of the at least one wall.
摘要:
A method for actively manipulating a primary fluid flow over a surface using an active flow control system including an active fluid flow device to provide lift enhancement and lift destruction. The method including the disposing of an active fluid flow device in the surface. The active fluid flow device is then operated to generate at least one of a steady blowing secondary fluid flow, a pulsed secondary fluid flow or an oscillating secondary fluid flow. While flowing the primary fluid over the surface to create a primary flow field, a secondary fluid flow is injected in an upstream direction and substantially opposed to the incoming primary fluid flow. The injecting of the secondary fluid flow in this manner provides for influencing of the primary flow field by manipulating a momentum of the secondary fluid flow to influence the incoming primary fluid flow and resultant lift.
摘要:
A wind turbine blade is situated on a wind turbine and includes a side and a tip. The blade is configured to rotate about an axis upon an impact of a wind flow on the blade. An active flow modification device is disposed on the blade. The active flow modification device is configured to receive active flow instructions and to modify the wind flow proximate to the blade. The resulting wind turbine blade uses these active flow modifications to achieve reduced loads, reduced aerodynamic losses, reduced noise, enhanced energy capture, or combinations thereof.
摘要:
A gas turbine engine augmentor includes at least one fluid based augmentor initiator defining a chamber in flow communication with a source of air and a source of fuel. The chamber includes a plurality of ejection openings in flow communication with an exhaust flowpath. The at least one fluid based augmentor initiator is devoid of any exhaust flowpath protrusions thereby minimizing any pressure drops and loss of thrust during dry work phase of operation. The source of fuel is operable for injecting fuel into the chamber such that at least a portion of the fuel flow is ignited at the plurality of ejection openings to produce a plurality of fuel-rich hot jets radially into the exhaust flowpath.
摘要:
An LED light assembly includes a housing, an LED disposed in the housing, a heat dissipating structure and a fluid current generator. The LED is in thermal communication with the heat dissipating structure and includes a flow path surface. The fluid current generator is disposed in the housing to create a current over the flow path surface.