摘要:
This invention relates to CARM1, CARM1 binding pockets, or CARM1-like binding pockets. The invention relates to a computer comprising a data storage medium encoded with the structure coordinates of such binding pockets. The invention also relates to methods of using the structure coordinates to solve the structure of homologous proteins or protein complexes. The invention relates to methods of using the structure coordinates to screen for and design compounds that bind to CARM1 protein, complexes of CARM1 protein, homologs thereof, or CARM1-like protein or protein complexes. The invention also relates to crystallizable compositions and crystals comprising a CARM1 protein or homologs thereof. The invention also relates to methods of identifying binders of CARM1 proteins. The invention also relates to methods for determining the intracellular activity of CARM1 methyltransferase and methods for identifying an agent that inhibits the intracellular activity of CARM1 methyltransferase.
摘要:
A method of extracting the shape of a probe tip of a probe-based instrument from data obtained by the instrument is provided. The method employs algorithms based on the principle that no reconstructed image points can physically occupy the same region as the tip during imaging. Sequential translates of the tip shape or volume sweep out an area or volume that is an “exclusion zone” similar to morphological erosion. The embodiments of the alternative method use either the region defined by the tip boundary or simply the tip boundary.
摘要:
A method of extracting the shape of a probe tip of a probe-based instrument from data obtained by the instrument is provided. The method employs algorithms based on the principle that no reconstructed image points can physically occupy the same region as the tip during imaging. Sequential translates of the tip shape or volume sweep out an area or volume that is an “exclusion zone” similar to morphological erosion. The embodiments of the alternative method use either the region defined by the tip boundary or simply the tip boundary.
摘要:
A method of extracting the shape of a probe tip of a probe-based instrument from data obtained by the instrument is provided. The method employs algorithms based on the principle that no reconstructed image points can physically occupy the same region as the tip during imaging. Sequential translates of the tip shape or volume sweep out an area or volume that is an “exclusion zone” similar to morphological erosion. The embodiments of the alternative method use either the region defined by the tip boundary or simply the tip boundary.
摘要:
The invention relates to SMYD3 methyltransferase (SMYD3), SMYD3 binding pockets or SMYD3-like binding pockets. The invention relates to a computer comprising a data storage medium encoded with the structure coordinates of such binding pockets. The invention also relates to methods of using the structure coordinates to solve the structure of homologous proteins or protein complexes. The invention relates to methods of using the structure coordinates to screen for and design compounds that bind to SMYD3 methyltransferase protein, complexes of SMYD3 methyltransferase protein, homologues thereof, or SMYD3-like protein or protein complexes.
摘要:
A method of extracting the shape of a probe tip of a probe-based instrument from data obtained by the instrument is provided. The method employs algorithms based on the principle that no reconstructed image points can physically occupy the same region as the tip during imaging. Sequential translates of the tip shape or volume sweep out an area or volume that is an “exclusion zone” similar to morphological erosion. The embodiments of the alternative method use either the region defined by the tip boundary or simply the tip boundary.