摘要:
Some demonstrative embodiments include devices, systems and/or methods of selectively aborting reception of wireless communication packets. For example, a receiver may at least partially process a portion of a wireless communication packet, to determine based on the portion of the communication packet whether the packet is intended to be received by the receiver and, if the packet is not intended to be received by the receiver, to abort processing of a remainder of the communication packet by one or more components of a physical layer of the receiver. Other embodiments are described and claimed.
摘要:
Embodiments provide techniques for device power management in wireless networks. For instance, an apparatus may include a power management module, and a transceiver module. The power management module determines a beacon interval and a wakeup interval. The transceiver module to send a transmission to one or more remote devices that includes the beacon interval and the wakeup interval. The beacon interval indicates a time interval between consecutive beacon transmissions of the apparatus, and the wakeup interval indicates a time interval between when the apparatus receives two consecutive beacons from a peer device.
摘要:
Embodiment and methods and apparatus for scheduling one or more responses for multiple stations (STAs) in a downlink multiple-user multiple-input-multiple-output (MIMO) network transmission are provided.
摘要:
A coordinated channel change system. In particular implementations, a method includes receiving a prepare-to-change message, wherein the prepare-to-change message indicates instructions to prepare to change channels and includes a designated channel, and forwarding the prepare-to-change message to one or more child nodes. The method also includes receiving a ready-to-change message from the one or more child nodes, and transmitting a change-to-channel message to the one or more child nodes, wherein the change-to-channel message indicates instructions to switch to the designated channel. The method also includes receiving an acknowledgement message from the one or more child nodes, and changing to the designated channel.
摘要:
A dynamic rate limiting mechanism for wireless mesh networks. In particular implementations, a method comprising monitoring one or more clients associated with a wireless mesh network and the respective hop counts of the clients to a root mesh node of the wireless mesh network; determining, responsive to one or more events, a client data rate for one or more clients of the wireless mesh network based on the number of current clients and the respective hop counts of the current clients; and applying the client data rate to the wireless mesh network.
摘要:
Methods, apparatuses and systems directed to facilitating load balancing and bandwidth allocation in wireless mesh networks. Generally, according to one implementation of the present invention, routing nodes implement a contention-based media access mechanism and self-allocate bandwidth within a wireless mesh network by dynamically modifying one or more contention-based transmission control parameters. The routing nodes determine a hop count and adjust one or more contention parameters based at least in part on the hop count.
摘要:
Embodiment and methods and means for scheduling an access point (AP) traffic destined for multiple stations (STAs) in a downlink multiple-user multiple-input-multiple-output (MIMO) network transmission are provided.
摘要:
In an example embodiment, a method for determining backhaul channel assignments for multi-channel dual radio mesh nodes. The method comprises acquiring collision domain data for each access point of an associated mesh network. A cost function is calculated for each access point of the associated mesh network, the cost function assigning a weighted value for each access point in a collision domain based on a number of access points in the collision domain. Backhaul channel assignments for selected for each access point that minimizes the cost function.
摘要:
Embodiments provide techniques for device power management in wireless networks. For instance, an apparatus may include a power management module, and a transceiver module. The power management module determines a beacon interval and a wakeup interval. The transceiver module to send a transmission to one or more remote devices that includes the beacon interval and the wakeup interval. The beacon interval indicates a time interval between consecutive beacon transmissions of the apparatus, and the wakeup interval indicates a time interval between when the apparatus receives two consecutive beacons from a peer device.