Abstract:
A method for delaying network reselection by a wireless communication device following a call failure is provided. The method can include determining an initiation of a voice call while connected to a first network. The method can further include participating in a circuit switched fallback (CSFB) procedure to transition from the first network to a second network in response to initiation of the voice call. The method can additionally include determining an occurrence of a call failure of the voice call. The method can also include, responsive to the call failure, barring reselection to the first network for a threshold barring period.
Abstract:
Apparatuses, systems, and methods for a wireless device to perform detection and mitigation of data stalls. The mitigation may occur during and/or at initiation of a data connection. The wireless device may establish a data connection(s) with a network over a Wi-Fi or cellular interface and monitor the data connection(s) for a data stall condition(s)/hint(s). The wireless device may perform a remedial action(s) responsive to detection of a data stall condition(s)/hint(s), including initiating a service recovery of the cellular interface, initiating a radio access technology (RAT) upgrade procedure, and/or initiating a handover procedure to a neighbor cell.
Abstract:
In some implementations, radio access technology (RAT) signals can be monitored and used to synchronize an internal clock of a mobile device to a network system clock without registering the mobile device to the network. In some implementations, a RAT processor can be configured to receive RAT signals and to prevent transmission of RAT signals. In some implementations, the internal clock can be associated with a GNSS processor and can be used to calculate a location of the mobile device. In some implementations, a RAT processor that is configured for a particular radio access technology can be configured to monitor signals associated with another radio access technology when synchronizing the internal clock. In some implementations, the RAT processor can monitor signals in response to a power event. The power event can be associated with powering a display of the mobile device.
Abstract:
Apparatuses, systems, and methods for a wireless device to perform detection and mitigation of data stalls. The mitigation may occur during and/or at initiation of a data connection. The wireless device may establish a data connection(s) with a network over a Wi-Fi or cellular interface and monitor the data connection(s) for a data stall condition(s)/hint(s). The wireless device may perform a remedial action(s) responsive to detection of a data stall condition(s)/hint(s), including initiating a service recovery of the cellular interface, initiating a radio access technology (RAT) upgrade procedure, and/or initiating a handover procedure to a neighbor cell.
Abstract:
In some implementations, radio access technology (RAT) signals can be monitored and used to synchronize an internal clock of a mobile device to a network system clock without registering the mobile device to the network. In some implementations, a RAT processor can be configured to receive RAT signals and to prevent transmission of RAT signals. In some implementations, the internal clock can be associated with a GNSS processor and can be used to calculate a location of the mobile device. In some implementations, a RAT processor that is configured for a particular radio access technology can be configured to monitor signals associated with another radio access technology when synchronizing the internal clock. In some implementations, the RAT processor can monitor signals in response to a power event. The power event can be associated with powering a display of the mobile device.
Abstract:
A device, system and method for initiating cell selection. The method is performed at a device connected to a network and camped on a first cell of the network. The method includes determining whether the device has successfully synchronized with the first cell. When the device is unable to synchronize with the first cell, the method includes determining whether at least one further cell satisfies predetermined reselection criteria and determining whether the at least one further cell satisfies initial cell selection criteria. When the at least one further cell satisfies the initial cell selection criteria, the method includes initiating an initial cell selection.
Abstract:
Adjusting search and measurement periodicity based on device motion. A wireless device may camp on a serving cell. Signal strength, signal quality, and signal to noise ratio of the serving cell may be measured. If each is above a respective threshold, and if the wireless device is stationary, the periodicities at which searches and neighbor cell measurements are performed may be adjusted (e.g., increased) from baseline periodicities.
Abstract:
Method and apparatus for facilitating return to a first wireless network from a second wireless network by a wireless communication device is provided. A method includes the wireless communication device engaging in data transfer for an application session on the first wireless network; participating in a CSFB procedure to transition from the first wireless network to the second wireless network for servicing a voice connection; buffering data received for the application session before and/or during the CSFB procedure; releasing the voice connection; discontinuing requests for downlink data for the application session in response to termination of the voice connection to provide a gap in data transfer; reselecting to the first wireless network during the gap in data transfer; using the buffered data to continue the application session during reselection; and resuming data transfer for the application session on the first wireless network after completing reselection.
Abstract:
Method and apparatus for facilitating return to a first wireless network from a second wireless network by a wireless communication device is provided. A method includes the wireless communication device engaging in data transfer for an application session on the first wireless network; participating in a CSFB procedure to transition from the first wireless network to the second wireless network for servicing a voice connection; buffering data received for the application session before and/or during the CSFB procedure; releasing the voice connection; discontinuing requests for downlink data for the application session in response to termination of the voice connection to provide a gap in data transfer; reselecting to the first wireless network during the gap in data transfer; using the buffered data to continue the application session during reselection; and resuming data transfer for the application session on the first wireless network after completing reselection.
Abstract:
Adjusting search and measurement periodicity based on device motion. A wireless device may camp on a serving cell. Signal strength, signal quality, and signal to noise ratio of the serving cell may be measured. If each is above a respective threshold, and if the wireless device is stationary, the periodicities at which searches and neighbor cell measurements are performed may be adjusted (e.g., increased) from baseline periodicities.