Abstract:
A test system may include test equipment for testing the radio-frequency performance of wireless electronic devices. The test equipment may provide radio-frequency downlink signals to a wireless electronic device under test (DUT). The test equipment may perform a power sweep by stepping down the downlink signals in signal power level to test receiver sensitivity for the DUT. The DUT may gather measurement data from the downlink signals. The test equipment may retrieve measurement data from the DUT after downlink signal transmission has ended. The test equipment may identify a trigger in the retrieved measurement data to ensure that the data is synchronized with the power sweep in the transmitted downlink signals. The test equipment may identify path loss information associated with the test system. The test equipment may compute receiver sensitivity values for the DUT based on the path loss information and retrieved measurement data.
Abstract:
A wireless electronic device may contain at least one adjustable antenna tuning element for use in tuning the operating frequency range of the device. The antenna tuning element may include radio-frequency switches, continuously/semi-continuously adjustable components such as tunable resistors, inductors, and capacitors, and other load circuits that provide desired impedance characteristics. A test system that is used for performing passive radio-frequency (RF) testing on antenna tuning elements in partially assembled devices is provided. The test system may include an RF tester and a test host. The tester may be used to gather scattering parameter measurements from the antenna tuning element. The test host may be used to ensure that power and appropriate control signals are being supplied to the antenna tuning element so that the antenna tuning element is placed in desired tuning states during testing.
Abstract:
A wireless electronic device may contain at least one adjustable antenna tuning element for use in tuning the operating frequency range of the device. The antenna tuning element may include radio-frequency switches, continuously/semi-continuously adjustable components such as tunable resistors, inductors, and capacitors, and other load circuits that provide desired impedance characteristics. A test system that is used for performing passive radio-frequency (RF) testing on antenna tuning elements in partially assembled devices is provided. The test system may include an RF tester and a test host. The tester may be used to gather scattering parameter measurements from the antenna tuning element. The test host may be used to ensure that power and appropriate control signals are being supplied to the antenna tuning element so that the antenna tuning element is placed in desired tuning states during testing.
Abstract:
A test system is provided for performing radio-frequency tests on an electronic device under test (DUT) having multiple antennas. The test system may include a test unit for generating radio-frequency test signals, a test enclosure, and a test antenna fixture. The test fixture may include tunable antenna circuitry, antenna tuning elements, a test sensor, a microcontroller, a battery, and a solar cell that charges the battery, each of which is mounted on a test fixture within the test enclosure. The test sensor may be used to detect stimuli issued by the DUT. In response to detecting the stimuli, the microcontroller may send control signals to the antenna tuning elements to configure the antenna circuitry in different modes. Each of the different modes may be optimized to test a selected one of the multiple antennas in the DUT when operating using different radio access technologies and at different frequencies.
Abstract:
Radio-frequency performance of wireless communications circuitry on an electronic device under test (DUT) may be tested without external test equipment such as signal analyzers or signal generators. A first DUT may transmit test signals to a second DUT. External attenuator circuitry interposed between the DUTs may attenuate the test signals to desired power levels. The second DUT may characterize and/or calibrate receiver performance by generating wireless performance metric data based on the attenuated test signals. A single DUT may transmit test signals to itself via corresponding transmit and receive ports coupled together through the attenuator. The DUT may generate performance metric data based on the test signals. The DUT may include feedback receiver circuitry coupled to an output of a transmitter via a feedback, path and may characterize and/or calibrate transmit performance using test signals transmitted by the transmitter and received by the feedback receiver.
Abstract:
Radio-frequency performance of wireless communications circuitry on an electronic device under test (DUT) may be tested without external test equipment such as signal analyzers or signal generators. A first DUT may transmit test signals to a second DUT. External attenuator circuitry interposed between the DUTs may attenuate the test signals to desired power levels. The second DUT may characterize and/or calibrate receiver performance by generating wireless performance metric data based on the attenuated test signals. A single DUT may transmit test signals to itself via corresponding transmit and receive ports coupled together through the attenuator. The DUT may generate performance metric data based on the test signals. The DUT may include feedback receiver circuitry coupled to an output of a transmitter via a feedback path and may characterize and/or calibrate transmit performance using test signals transmitted by the transmitter and received by the feedback receiver.
Abstract:
A test system may include test equipment for testing the radio-frequency performance of wireless electronic devices. The test equipment may provide radio-frequency downlink signals to a wireless electronic device under test (DUT). The test equipment may perform a power sweep by stepping down the downlink signals in signal power level to test receiver sensitivity for the DUT. The DUT may gather measurement data from the downlink signals. The test equipment may retrieve measurement data from the DUT after downlink signal transmission has ended. The test equipment may identify a trigger in the retrieved measurement data to ensure that the data is synchronized with the power sweep in the transmitted downlink signals. The test equipment may identify path loss information associated with the test system. The test equipment may compute receiver sensitivity values for the DUT based on the path loss information and retrieved measurement data.
Abstract:
A test system is provided for performing radio-frequency tests on an electronic device under test (DUT) having multiple antennas. The test system may include a test unit for generating radio-frequency test signals, a test enclosure, and a test antenna fixture. The test fixture may include tunable antenna circuitry, antenna tuning elements, a test sensor, a microcontroller, a battery, and a solar cell that charges the battery, each of which is mounted on a test fixture within the test enclosure. The test sensor may be used to detect stimuli issued by the DUT. In response to detecting the stimuli, the microcontroller may send control signals to the antenna tuning elements to configure the antenna circuitry in different modes. Each of the different modes may be optimized to test a selected one of the multiple antennas in the DUT when operating using different radio access technologies and at different frequencies.