Abstract:
A method and apparatus for control of a dose of extreme ultraviolet (EUV) radiation generated by a laser produced plasma (LPP) EUV light source that combines pulse control mode and pulse modulation. The EUV energy created by each pulse is measured and total EUV energy created by the fired pulses determined, a desired energy for the next pulse is determined based upon whether the total EUV energy is greater or less than a desired average EUV energy times the number of pulses. If the desired pulse energy for the next droplet is within the range of one or more pulse modulation actuators, the pulse is modulated; otherwise, the pulse is fired to miss the droplet. This provides greater control of the accumulated dose as well as uniformity of the EUV energy over time, greater ability to compensate for pulses that generate EUV energy that is higher or lower than nominal expected values, and ability to provide an average EUV energy per pulse that is less than the nominal minimum EUV energy per pulse of the system.
Abstract:
Energy output from a laser-produced plasma (LPP) extreme ultraviolet light (EUV) system varies based on how well the laser beam is focused on droplets of target material to generate plasma at a primary focal spot. Maintaining droplets at the primary focal spot during burst firing is difficult because generated plasma from preceding droplets push succeeding droplets out of the primary focal spot. Current droplet-to-droplet feedback control to re-align droplets to the primary focal spot is relatively slow. The system and method described herein adaptively pre-compensate for droplet push-out by directing droplets to a target position that is offset from the primary focal spot such that when a droplet is lased, the droplet is pushed by the laser beam into the primary focal spot to generate plasma. Over time, the EUV system learns to maintain real-time alignment of droplet position so plasma is generated consistently within the primary focal spot.
Abstract:
An extreme ultraviolet light system includes a steering system that steers and focuses an amplified light beam traveling along a propagation direction to a focal plane near a target location within an extreme ultraviolet light chamber, a detection system including at least one detector positioned to detect an image of a laser beam reflected from at least a portion of a target material within the chamber, a wavefront modification system in the path of the reflected laser beam and between the target location and the detection system, and a controller. The wavefront modification system is configured to modify the wavefront of the reflected laser beam as a function of a target focal plane position along the propagation direction. The controller includes logic for adjusting a location of the focal plane of the amplified light beam relative to the target material based on the detected image of the reflected laser beam.
Abstract:
Energy output from a laser-produced plasma (LPP) extreme ultraviolet light (EUV) system varies based on how well the laser beam is focused on droplets of target material to generate plasma at a primary focal spot. Maintaining droplets at the primary focal spot during burst firing is difficult because generated plasma from preceding droplets push succeeding droplets out of the primary focal spot. Current droplet-to-droplet feedback control to re-align droplets to the primary focal spot is relatively slow. The system and method described herein adaptively pre-compensate for droplet push-out by directing droplets to a target position that is offset from the primary focal spot such that when a droplet is lased, the droplet is pushed by the laser beam into the primary focal spot to generate plasma. Over time, the EUV system learns to maintain real-time alignment of droplet position so plasma is generated consistently within the primary focal spot.