Abstract:
An integrated circuit (IC) measures uncertainties in a first signal. The IC comprises a programmable delay circuit to introduce a programmable delay to the first signal to generate a first delayed signal. The IC further comprises a digital delay line (DDL) comprising a first delay chain of delay elements having input to receive the first delayed signal. The DDL further comprises a set of storage elements, each storage element having an input coupled to an output of a corresponding delay element of the first delay chain, and an output to provide a corresponding bit of a digital reading. The DDL additionally comprises a decoder to generate a digital signature from the digital reading and a controller to iteratively adjust the programmed delay of the programmable delay circuit to search for a failure in a resulting digital signature.
Abstract:
Various embodiments of a gate oxide breakdown detection technique detect gate oxide degradation due to stress on a per part basis without destroying functional circuits for an intended application. Stress on the gate oxide may be applied while nominal drain currents flow through a device, thereby stressing the device under conditions similar to actual operating conditions. The technique is relatively fast and does not require analog amplifiers or tuning of substantial amounts of other additional circuitry as compared to conventional gate oxide breakdown detection techniques.
Abstract:
An integrated circuit (IC) measures uncertainties in a first signal. The IC comprises a programmable delay circuit to introduce a programmable delay to the first signal to generate a first delayed signal. The IC further comprises a digital delay line (DDL) comprising a first delay chain of delay elements having input to receive the first delayed signal. The DDL further comprises a set of storage elements, each storage element having an input coupled to an output of a corresponding delay element of the first delay chain, and an output to provide a corresponding bit of a digital reading. The DDL additionally comprises a decoder to generate a digital signature from the digital reading and a controller to iteratively adjust the programmed delay of the programmable delay circuit to search for a failure in a resulting digital signature.
Abstract:
Various embodiments of a gate oxide breakdown detection technique detect gate oxide degradation due to stress on a per part basis without destroying functional circuits for an intended application. Stress on the gate oxide may be applied while nominal drain currents flow through a device, thereby stressing the device under conditions similar to actual operating conditions. The technique is relatively fast and does not require analog amplifiers or tuning of substantial amounts of other additional circuitry as compared to conventional gate oxide breakdown detection techniques.