摘要:
A visible and infrared light powered retinal implant is disclosed that is implanted into the subretinal space for electrically inducing formed vision in the eye. The retinal implant includes a stacked microphotodetector arrangement having an image sensing pixel layer and a voltage and current gain adjustment layer for providing variable voltage and current gain to the implant so as to obtain better low light implant performance than the prior art, and to compensate for high retinal stimulation thresholds present in some retinal diseases. A first light filter is positioned on one of the microphotodetectors in each of the image sensing pixels of the implant, and a second light filter is positioned on the other of the microphotodetectors in the image sensing pixel of the implant, each of the microphotodetectors of the pixel to respond to a different wavelength of light to produce a sensation of darkness utilizing the first wavelength, and a sensation of light using the second wavelength, and a third light filter is positioned on a portion of the voltage and current gain adjustment layer that is exposed to light, to allow adjustment of the implant voltage and current gain of the device by use of a third wavelength of light.
摘要:
An artificial retina device and a method for stimulating and modulating its function is disclosed. The artificial retina device is comprised of plural multi-phasic microphotodiode subunits. In persons suffering from blindness due to outer retinal layer damage, a plurality of such devices, when surgically implanted into the subretinal space, may allow useful formed artificial vision to develop. One device, called a MMRI-4, transduces light into electric currents to stimulate the retina. The four microphotodiode subunits of the MMRI-4 are oriented so that each flattened sides of the MMRI-4 has two subunits in a PiN configuration and two subunits in a NiP configuration. The flattened cubic shape of the MMRI-4 will allow one or the other of the two flattened sides to be preferentially directed toward incident light when implanted in the subretinal space. Because both the PiN and NiP configurations are present on each of the flattened sides of the MMRI-4, electric currents which produce the sensation of light from a PiN current, or darkness from a NiP current, can be induced regardless of which the flattened photoactive sides faces incident light. Filter layers disposed on the PiN configuration will allow visible light to induce a PiN current, and filter layers disposed on the NiP configuration will allow infrared light to induce a NiP current. By projecting real or computer controlled visible light images, and computer controlled infrared light images or illumination, simultaneously or in rapid alternation onto the MMRI-4s, the nature of induced retinal images may be modulated and improved. An Adaptive Imaging Retinal Stimulation System (AIRES), with a Projection and Tracking Optical System (PTOS), which may be worn as a headset is used for this purpose, and is also disclosed. Color images may even be induced by programming the stimulating pulse durations and frequencies of the AIRES system. By creating both PiN and NiP currents, in close spatial positions and temporal sequences, electrolysis damage to cellular tissue from prolonged unidirectional electric currents is reduced. MMRI-4s may also be embedded in a flexible, biologically compatible sheet, with its electrodes exposed on both surfaces of the sheet. This sheet is then implanted on the nerve fiber layer surface of the retina, where electrical stimulation can also induce a form of artificial vision.
摘要:
An artificial retina device and a retinal stimulation system and method for stimulating and modulating its function is disclosed. The artificial retina device includes multi-phasic microphotodiode subunits. In persons suffering from blindness due to outer retinal layer damage, a plurality of such devices, when surgically implanted into the subretinal space, may allow useful formed artificial vision to develop. By projecting real or computer controlled visible light images, and computer controlled infrared light images or illumination, simultaneously or in rapid alternation onto the artificial retina device, the nature of induced retinal images may be modulated and improved. The retinal stimulation system may be worn as a headset. Color images may be induced by programming the stimulating pulse durations and frequencies of the stimulation.
摘要:
An artificial retina device and a method for stimulating and modulating its function is disclosed. The artificial retina device is comprised of plural multi-phasic microphotodiode subunits. In persons suffering from blindness due to outer retinal layer damage, a plurality of such devices, when surgically implanted into the subretinal space, may allow useful formed artificial vision to develop. One device, called a MMRI-4, transduces light into electric currents to stimulate the retina. The four microphotodiode subunits of the MMRI-4 are oriented so that each flattened sides of the MMRI-4 has two subunits in a PiN configuration and two subunits in a NiP configuration. Filter layers disposed on the PiN configuration will allow visible light to induce a PiN current, and filter layers disposed on the NiP configuration will allow infrared light to induce a NiP current. By projecting real or computer controlled visible light images, and computer controlled infrared light images or illumination, simultaneously or in rapid alternation onto the MMRI-4s, the nature of induced retinal images may be modulated and improved. An Adaptive Imaging Retinal Stimulation System (AIRES), with a Projection and Tracking Optical System (PTOS), which may be worn as a headset is used for this purpose, and is also disclosed. Color images may even be induced by programming the stimulating pulse durations and frequencies of the AIRES system.
摘要:
Microscopic photoelectric devices with semitransparent surface electrodes are combined with a liquid or other suitable vehicle. Together they are injected into the subretinal space of the eye. The microscopic photoelectric devices transduce incident light into electric current that will stimulate the overlying cellular layers of the retina. In persons suffering from visual disfunction due to outer retinal layer damage, such devices may allow useful formed artificial vision. The preferred independent surface electrode microphotodiodes (ISEMCP's) may be in the shape of microspheres, microdiscs or other microshapes. The ISEMCP's are formed of either PiN or NiP type semiconductors, or a combination of both, in a single unit. These devices will form a dipole when exposed to light due to the electric current generated. A magnetic field applied in the vicinity of the eye may help align the ISEMCP's within the retina so that their photo-active surfaces face the incident light. Alternatively, the ISEMCP's may be embedded and prealigned in a transparent flexible sheet, permeable to nutrients and oxygen, before implantation into the subretinal space. Such sheet will allow passage of biological nutrients and oxygen around the ISEMCP's. This sheet may also dissolve leaving behind ISEMCP units lying separately, or in an arranged pattern produced by a surrounding mesh.
摘要:
An artificial retina device and a method for stimulating and modulating its function is disclosed. The artificial retina device is comprised of plural multi-phasic microphotodiode subunits. In persons suffering from blindness due to outer retinal layer damage, a plurality of such devices, when surgically implanted into the subretinal space, may allow useful formed artificial vision to develop. One device, called a MMRI-4, transduces light into electric currents to stimulate the retina. The four microphotodiode subunits of the MMRI-4 are oriented so that each flattened sides of the MMRI-4 has two subunits in a PiN configuration and two subunits in a NiP configuration. By projecting real or computer controlled visible light images, and computer controlled infrared light images or illumination, simultaneously or in rapid alternation onto the MMRI-4s, the nature of induced retinal images may be modulated and improved. An Adaptive Imaging Retinal Stimulation System (AIRES), with a Projection and Tracking Optical System (PTOS), which may be worn as a headset is used for this purpose, and is also disclosed. Color images may even be induced by programming the stimulating pulse durations and frequencies of the AIRES system.
摘要:
A visible and infrared light powered retinal implant is disclosed that is implanted into the subretinal space for electrically inducing formed vision in the eye. The retinal implant includes a stacked microphotodetector arrangement having an image sensing pixel layer and a voltage and current gain adjustment layer for providing variable voltage and current gain to the implant so as to obtain better low light implant performance than the prior art, and to compensate for high retinal stimulation thresholds present in some retinal diseases. A first light filter is positioned on one of the microphotodetectors in each of the image sensing pixels of the implant, and a second light filter is positioned on the other of the microphotodetectors in the image sensing pixel of the implant, each of the microphotodetectors of the pixel to respond to a different wavelength of light to produce a sensation of darkness utilizing the first wavelength, and a sensation of light using the second wavelength, and a third light filter is positioned on a portion of the voltage and current gain adjustment layer that is exposed to light, to allow adjustment of the implant voltage and current gain of the device by use of a third wavelength of light.
摘要:
Microscopic photodiode devices with semi-transparent surface electrodes are combined with a liquid or other suitable vehicle. Together they are injected into the subretinal space of the eye. The purpose of these microphotodiode photovoltaic devices is to transduce incident light into electric current which stimulate the overlying cellular layers of the retina. In persons suffering from visual dysfunction due to outer retinal layer damage, such devices may allow useful formed artificial vision. These independent surface electrode microphotodiodes (ISEMCPs) may be in the shape of micro-spheres, micro-cylinders or other micro-shapes. An off-center embedded ferromagnetic layer will confer magnetic susceptibility to the ISEMCPs. A magnetic field applied in the vicinity of the eye will align the ISEMCPs within the subretinal space directing their photoactive surface toward incident light. Alternatively ISEMCPs may be embedded, prealigned, in a transparent flexible sheet permeable to nutrients and oxygen before implantation into the subretinal space. Such a sheet will allow passage of biological nutrients and oxygen around the ISEMCPs. This sheet may also dissolve leaving behind ISEMCP units lying separately, or in an arranged pattern produced by a surrounding mesh. ISEMCPs may be of the PiN or NiP type or a combination of both in a single unit. An electric capacitor layer may also be incorporated into the ISEMCP device (ISEMCP-C) to allow charge storage during exposure to light and charge release in darkness producing an opposite polarity current. This last modification will allow the generation of hyperpolarizing currents in light and depolarizing currents in darkness which is necessary to produce formed vision of light and dark images.
摘要:
Mechanically activated objects or devices for use in treating degenerative retinal diseases are provided. Such devices apply mechanical forces to tissues of an eye to effectuate treatment and are configured for chronic implantation (thereby applying chronic stimulation/irritation) in or on the eye. The devices may be configured for contact with a retina of the eye, preferably positioned in a subretinal space. Various embodiments comprise a moving member configured for chronic contact with at least a portion of the eye, which moving member is activated by an actuator. In some embodiments, the actuator may be distally located relative to the moving member. Alternatively, the moving member may be supported by a body member that, optionally, also supports the actuator.
摘要:
An optical signal receiver for rapid and error free translation of optical signals into electrical signals is disclosed. The receiver is coupled to a light source. The light source is amplified and then split into two segments. One of the segments is delayed by a specific amount of time. Both segments are optically coupled to a photo detector. Each photo detector is coupled in parallel and are connected by two output terminals. When the voltage output by each photo detector is equal, the output terminals are balanced and will not have any voltage. The circuit will provide a voltage output on the terminal only on differential photocurrents sensed by the detector elements. The quiescent magnitude of the voltage output is a function of the value of the reverse bias voltage applied by the two voltage sources.