Abstract:
A mobile base is provided that travels through delivery areas and utilizes associated transportation units (e.g., automated aerial vehicles) for delivering items from the mobile base to user specified delivery locations. The transportation units may be carried on the mobile base and may utilize navigation systems (e.g., utilizing GPS) to travel back and forth to the mobile base when making deliveries. The mobile base may have multiple stopping points and may continue to move along a route through a geographic area while the transportation units depart from and return to the mobile base at different locations.
Abstract:
This disclosure is directed to monitoring a noise signature of an unmanned aerial vehicle (UAV) and varying the speed of the motors of the UAV to reduce unwanted sound (i.e., noise) of the UAV based on the noise signature. The noise signature of the UAV may be measured by an audio sensor of a vibration sensor, and feedback may be provided to the UAV. The UAV may generate noise during flight, which may include a number of noise components such as tonal noise (e.g., a whining noise such as a whistle of a kettle at full boil) and broadband noise (e.g., a complex mixture of sounds of different frequencies, such as the sound of ocean surf). By measuring the noise signature of the UAV, and varying the motor revolutions per minute (RPM) during flight operations, the UAV may reduce tonal components of the UAV noise signature.
Abstract:
Described is an unmanned aerial vehicle (“UAV”) that includes a lifting propulsion mechanism that is circumferentially-driven and includes a propeller assembly and a propeller rim enclosure. The propeller assembly includes a plurality of propeller blades that extend radially and are coupled to an inner side of a substantially circular propeller rim that encompasses the propeller blades. Permanent magnets are coupled to an outer side of the propeller rim. The propeller rim and the magnets are positioned within a cavity of the propeller rim enclosure such that the propeller rim will rotate within the propeller rim enclosure. Also within the cavity of the propeller rim enclosure are electromagnets that are used to cause the propeller rim to rotate.
Abstract:
Disclosed are methods and systems for delivery of items using an unmanned aerial vehicle (“UAV”). A user may be provided with a delivery location identifier (“DLI”) that is to be placed at a delivery location within a delivery destination to identify where a UAV is to position an item as part of a delivery to the delivery destination. For example, the delivery destination may be a user's home. Within the deliver destination of the user's home, the user may select a delivery location, such as a spot in the back yard wherein the UAV is to position the ordered item as part of the delivery. To aid the UAV in navigating to the delivery location, the user places the DLI at the delivery location. The UAV detects the DLI and positions the item at or near the DLI as part of the item delivery.
Abstract:
A mobile base is provided that travels through delivery areas and utilizes associated transportation units (e.g., automated aerial vehicles, automated mobile vehicles, etc.) for delivering items from the mobile base to user specified delivery locations. The transportation units may be carried on the mobile base and may utilize navigation systems (e.g., utilizing GPS) to travel back and forth to the mobile base when making deliveries. Tracking data (e.g., GPS) may be utilized for status monitoring and notifications, as well as providing a map that may show and update the current locations of the transportation units and/or mobile base.
Abstract:
A mobile base is provided that travels through delivery areas and utilizes associated transportation units (e.g., automated aerial vehicles) for delivering items from the mobile base to delivery locations. The transportation units may be carried on the mobile base, and may travel back and forth to the mobile base when making deliveries. The mobile base may include an extraction point (e.g., an opening in the roof of the mobile base) where items may be engaged by transportation units for delivery.
Abstract:
Unmanned aerial vehicles (“UAVs”) which fly to destinations (e.g., for delivering items) may land on transportation vehicles (e.g., delivery trucks, etc.) for temporary transport. An agreement with the owner of the transportation vehicles (e.g., a shipping carrier) may be made for obtaining consent and determining compensation for landings, and the associated transportation vehicles that are available for landings may be identified by markers on the roof or other identification techniques. The routes of the transportation vehicles may be known and utilized to determine locations where UAVs will land on and take off from the transportation vehicles, and in cases of emergencies (e.g., due to low batteries, mechanical issues, etc.) the UAVs may land on the transportation vehicles for later retrieval.
Abstract:
This disclosure is directed to varying a speed of one or more motors in an unmanned aerial vehicle (UAV) to reduce unwanted sound (i.e., noise) of the UAV. A UAV may include motors coupled with propellers to provide lift and propulsion to the UAV in various stages of flight, such as while ascending, descending, hovering, or transiting. The motors and propellers may generate noise, which may include a number of noise components such as tonal noise (e.g., a whining noise such as a whistle of a kettle at full boil) and broadband noise (e.g., a complex mixture of sounds of different frequencies, such as the sound of ocean surf). By varying the controls to the motors, such as by varying the speed or revolutions per minute (RPM) of a motor during operation by providing random or pseudo-random RPM variations, the UAV may generate a noise signature with reduced tonal noise.
Abstract:
A mobile base is provided that travels through areas for receiving items (e.g., from merchants, vendors, returns of items from users, etc.), wherein the items are transported to the mobile base by associated transportation units (e.g., automated aerial vehicles). The transportation units may be carried on the mobile base or may be stationed locally. Once an item is received by a transportation unit or at the mobile base, a credit or other payment may be issued to the supplier of the item, and the item may be recorded as available for sale in an inventory database. The mobile base may transport the received items to a materials handling facility, or the received items may be sold directly from the mobile base, for which transportation units may subsequently be utilized to transport the items to user specified delivery locations.
Abstract:
Unmanned aerial vehicles (“UAVs”) which fly to destinations (e.g., for delivering items) may land on transportation vehicles (e.g., delivery trucks, etc.) for temporary transport. An agreement with the owner of the transportation vehicles (e.g., a shipping carrier) may be made, and the associated transportation vehicles that are available for landings may be identified by markers on the roof or other identification techniques. Different types of communications may be provided as part of a landing process (e.g., a notification regarding a proposed landing may be sent including a request for a confirmation that the proposed landing is acceptable, etc.). The routes of the transportation vehicles may be known and utilized to determine locations where UAVs will land on and take off from the transportation vehicles.