Abstract:
The disclosure pertains to techniques for operation of graphics systems and task execution on a graphics processor. One such technique comprises a computer-implemented method for task execution on a graphics processor, the method comprising creating a data structure for grouping data resources, populating the data structure with two or more data resources for encoding into a graphics processing language by an encoding object, passing the data structure to a first programming interface command, the first programming interface command configured to access the data structure's data resources, triggering execution of a first function on a graphics processer in response to passing the data structure to the first programming interface command, passing the data structure to a second programming interface command, the second programming interface command configured to access the data structure's data resources, and triggering execution of a second function on the graphics processer in response to passing the data structure to the second programming interface command.
Abstract:
An innovative GPU framework and related APIs present more accurate representations of the target hardware so that the distinctions between the fixed-function and programmable features of the GPU are perceived by a developer. This permits a program and/or a graphics object generated or manipulated by the program to be understood as not just code, but machine states that are associated with the code. When such an object is defined, the definitional components requiring programmable GPU features can be compiled only once and reused repeatedly as needed. Similarly, when a state change is made, the state changes correspond to the state changes made on the hardware. Additionally, the creation of these immutable objects prevents a developer from inadvertently changing portions of the program or object that cause it to behave differently than intended.
Abstract:
Methods, systems and devices are disclosed to examine developer supplied graphics code and attributes at run-time. The graphics code designed for execution on a graphics processing unit (GPU) utilizing a coding language such as OpenCL or OpenGL which provides for run-time analysis by a driver, code generator, and compiler. Developer supplied code and attributes can be analyzed and altered based on the execution capabilities and performance criteria of a GPU on which the code is about to be executed. In general, reducing the number of developer defined work items or work groups can reduce the initialization cost of the GPU with respect to the work to be performed and result in an overall optimization of the machine code. Manipulation code can be added to adjust the supplied code in a manner similar to unrolling a loop to improve execution performance.
Abstract:
Systems, computer readable media, and methods for a unified programming interface and language are disclosed. In one embodiment, the unified programming interface and language assists program developers write multi-threaded programs that can perform both graphics and data-parallel compute processing on GPUs. The same GPU programming language model can be used to describe both graphics shaders and compute kernels, and the same data structures and resources may be used for both graphics and compute operations. Developers can use multithreading efficiently to create and submit command buffers in parallel.
Abstract:
Systems, computer readable media, and methods for a unified programming interface and language are disclosed. In one embodiment, the unified programming interface and language assists program developers write multi-threaded programs that can perform both graphics and data-parallel compute processing on GPUs. The same GPU programming language model can be used to describe both graphics shaders and compute kernels, and the same data structures and resources may be used for both graphics and compute operations. Developers can use multithreading efficiently to create and submit command buffers in parallel.
Abstract:
Methods, systems and devices are disclosed to examine developer supplied graphics code and attributes at run-time. The graphics code designed for execution on a graphics processing unit (GPU) utilizing a coding language such as OpenCL or OpenGL which provides for run-time analysis by a driver, code generator, and compiler. Developer supplied code and attributes can be analyzed and altered based on the execution capabilities and performance criteria of a GPU on which the code is about to be executed. In general, reducing the number of developer defined work items or work groups can reduce the initialization cost of the GPU with respect to the work to be performed and result in an overall optimization of the machine code. Manipulation code can be added to adjust the supplied code in a manner similar to unrolling a loop to improve execution performance.
Abstract:
Systems, computer readable media, and methods for a unified programming interface and language are disclosed. In one embodiment, the unified programming interface and language assists program developers write multi-threaded programs that can perform both graphics and data-parallel compute processing on GPUs. The same GPU programming language model can be used to describe both graphics shaders and compute kernels, and the same data structures and resources may be used for both graphics and compute operations. Developers can use multithreading efficiently to create and submit command buffers in parallel.
Abstract:
Techniques are disclosed relating to synchronizing access to pixel resources. Examples of pixel resources include color attachments, a stencil buffer, and a depth buffer. In some embodiments, hardware registers are used to track status of assigned pixel resources and pixel wait and pixel release instruction are used to synchronize access to the pixel resources. In some embodiments, other accesses to the pixel resources may occur out of program order. Relative to tracking and ordering pass groups, this weak ordering and explicit synchronization may improve performance and reduce power consumption. Disclosed techniques may also facilitate coordination between fragment rendering threads and auxiliary mid-render compute tasks.
Abstract:
Techniques are disclosed relating to synchronizing access to pixel resources. Examples of pixel resources include color attachments, a stencil buffer, and a depth buffer. In some embodiments, hardware registers are used to track status of assigned pixel resources and pixel wait and pixel release instruction are used to synchronize access to the pixel resources. In some embodiments, other accesses to the pixel resources may occur out of program order. Relative to tracking and ordering pass groups, this weak ordering and explicit synchronization may improve performance and reduce power consumption. Disclosed techniques may also facilitate coordination between fragment rendering threads and auxiliary mid-render compute tasks.
Abstract:
Systems, computer readable media, and methods for a unified programming interface and language are disclosed. In one embodiment, the unified programming interface and language assists program developers write multi-threaded programs that can perform both graphics and data-parallel compute processing on GPUs. The same GPU programming language model can be used to describe both graphics shaders and compute kernels, and the same data structures and resources may be used for both graphics and compute operations. Developers can use multithreading efficiently to create and submit command buffers in parallel.