Abstract:
A mechanism for managing peak power in a memory storage array that includes sub-array blocks may reduce the peak currents associated with read and write operations by staggering the wordline signal activation to each of the sub-array blocks. In particular, the wordline units within each sub-array block may generate the wordline signals to each sub-array block such that a read wordline signal of one sub-array block does not transition from one logic level to another logic level at the same time as the write wordline of another sub-array block. Further, the wordline units may generate the wordline signals to each sub-array block such that a read wordline of a given sub-array block does not transition from one logic level to another logic level at the same time as a read wordline signal of another sub-array block.
Abstract:
A method and apparatus for storing and accessing sparse data is disclosed. A sparse array circuit may receive information indicative of a request to perform a read operation on a memory circuit that includes multiple banks. The sparse array circuit may compare an address included in the received information to multiple entries that correspond to address locations in the memory circuit that store sparse data. In response to a determination that that the address matches a particular entry, the sparse array may generate one or more control signals that may disable the read operation, and cause a data control circuit to transmits the sparse data pattern.
Abstract:
A method and apparatus for storing and accessing sparse data is disclosed. A sparse array circuit may receive information indicative of a request to perform a read operation on a memory circuit that includes multiple banks. The sparse array circuit may compare an address included in the received information to multiple entries that correspond to address locations in the memory circuit that store sparse data. In response to a determination that that the address matches a particular entry, the sparse array may generate one or more control signals that may disable the read operation, and cause a data control circuit to transmits the sparse data pattern.
Abstract:
Systems, apparatuses, and methods for implementing a storage array with a voltage regulator circuit. An integrated circuit (IC) may include a storage array, periphery logic, and a voltage regulator circuit coupled to an array power supply and a periphery power supply; the latter may operate at any of several periphery operating voltages according to respective power modes of operation. One or more of the periphery operating voltages may be less than a threshold array operating voltage that is required by the storage array for read or write access during an active mode of storage array operation. The voltage regulator circuit may generate, dependent on a selected power mode, a regulated array power supply that operates at a voltage that satisfies the threshold array operating voltage and is less than an operating voltage of the array power supply. The regulated power supply may reduce overall power consumption of the storage array.
Abstract:
Embodiments of a memory device are disclosed that may allow for multiple pre-charge voltages. The memory device may include a plurality of data lines, and a plurality of pre-charge circuits. Each of the plurality of data lines may be coupled to a plurality of data storage cells. Each of the plurality of pre-charge circuits may be coupled to a respective data line, and be configured to charge the data line to a first voltage level responsive to a first control signal. Each of the plurality of pre-charge circuits may also be configured to charge the respective data line to a second voltage responsive to a second control signal.
Abstract:
A method and apparatus for storing and accessing sparse data is disclosed. A sparse array circuit may receive information indicative of a request to perform a read operation on a memory circuit that includes multiple banks. The sparse array circuit may compare an address included in the received information to multiple entries that correspond to address locations in the memory circuit that store sparse data. In response to a determination that that the address matches a particular entry, the sparse array may generate one or more control signals that may disable the read operation, and cause a data control circuit to transmits the sparse data pattern.
Abstract:
Techniques for implementing a storage array write driver with a reduced-power boost circuit. An apparatus may include a bit cell configured to store data, a bit line circuit coupled to convey data to the bit cell, a write driver circuit configured to transmit write data to the bit cell via the bit line circuit, and a boost circuit that is distinct from the write driver circuit. The boost circuit may be selectively coupled to drive the bit line circuit below a ground voltage dependent on activation of a boost signal and the write data being in a logic low state. The boost circuit may also be coupled to the bit line circuit at a location that is closer to the bit cell than to the write driver circuit, and may be sized to discharge the bit line circuit without being sized to discharge internal capacitance of the write driver.
Abstract:
A mechanism for managing peak power in a memory storage array that includes sub-array blocks may reduce the peak currents associated with read and write operations by staggering the wordline signal activation to each of the sub-array blocks. In particular, the wordline units within each sub-array block may generate the wordline signals to each sub-array block such that a read wordline signal of one sub-array block does not transition from one logic level to another logic level at the same time as the write wordline of another sub-array block. Further, the wordline units may generate the wordline signals to each sub-array block such that a read wordline of a given sub-array block does not transition from one logic level to another logic level at the same time as a read wordline signal of another sub-array block.
Abstract:
A memory includes an I/O unit that is shared between multiple storage arrays. The shared I/O unit provides output data from the arrays. The memory includes an isolation unit connected between each storage array and the shared I/O unit. In addition, each of the storage arrays and the shared I/O unit may be connected to a separate switched voltage domain through for example, power gating circuits. If one or more of the storage arrays is placed in retention or low-voltage mode, the isolation units that are coupled to the affected storage arrays may be configured to isolate the bitlines of those storage arrays from the shared I/O data paths.
Abstract:
An integrated circuit with a pulse clock unit having shared gating control includes one or more logic blocks, each including a clock distribution network configured to distribute a clock signal. The integrated circuit also includes a clock unit coupled to the one or more logic blocks and configured to generate a pulse clock signal formed using a chain of inverting logic gates. The clock unit may be further configured to provide the pulse clock signal to the clock distribution network. The clock unit may also include an enable input that is coupled to one input of one of the inverting logic gates. In addition, the clock unit may be configured to selectively enable and disable the pulse clock signal in response to an enable signal on the enable input.