Abstract:
Provided is a pneumatic tire in which the adhesion of a noise absorbing member formed of a porous material is improved. A pneumatic tire according to the present invention includes a resin layer, a noise absorbing member and a locking member. The resin layer is formed of any one of a thermoplastic resin and a thermoplastic elastomeric composition obtained by dispersing an elastomer in a thermoplastic resin, and is formed on at least a part of the inner surface of the tire. The noise absorbing member is formed of a porous material, and is disposed on the resin layer. The locking member is formed of a thermoplastic resin, and is bonded to the resin layer through the noise absorbing member by thermal fusion.
Abstract:
A tire noise reduction device including at least one sound absorbing member of flexible polyurethane foam to be attached to an inner surface of a tire facing a cavity of the tire. The sound absorbing member includes a first sound absorbing layer placed on a tire inner surface side thereof and a second sound absorbing layer placed on a tire reverse inner surface side thereof, with the second sound absorbing layer being disposed on the first sound absorbing layer. The second sound absorbing layer has a density lower than that of the first sound absorbing layer. The second sound absorbing layer is of a thickness that is greater than or equal to that of the first sound absorbing layer. The second sound absorbing layer extends annularly in the tire circumferential direction, while the first sound absorbing layer includes a plurality of the sound absorbing members.
Abstract:
A tire noise reduction device including a noise absorbing member made from a porous material that is formed into a band, the band being disposed along a tire circumferential direction on an inner surface of a tread portion of a pneumatic tire, wherein the noise absorbing member is wound so as to be laminated with two layers or more on at least a part of the tire circumferential direction to form a circular body, a crossing section where an inside layer and an outside layer of the noise absorbing member interchange is provided in at least one location on a periphery of the circular body, and the ends of the longitudinal direction of the noise absorbing member are disposed inward of the outermost layer of the noise absorbing member.
Abstract:
A pneumatic tire including a separatable pair of mechanical fasteners wherein a first fastener of the pair of mechanical fasteners is provided on a tire inner surface. In this pneumatic tire, the obtained engagement force of the pair of mechanical fasteners is great and is essentially free of variations (positional variation within the tire and variation from tire to tire); the engagement force deteriorates/declines minimally over time due to extreme usage conditions including repetitive deformation and compaction over an extended period of time caused by tire rotation at high speeds in a state of relatively elevated temperatures; and the desired engagement force can be maintained over an extended period of time.
Abstract:
A pneumatic tire with a surface fastener having engagement elements that are prevented from being crushed during curing, and a method of producing such a pneumatic tire. Uncured rubber is filled between the engagement elements of the surface fastener to form a protective rubber layer in which the engagement elements are buried. Then, the surface fastener having the protective rubber layer is placed on an uncured tire so that the surface opposite the surface having the engagement elements is in intimate contact with the inner surface of the tire, and after that the uncured tire having the surface fastener is cured by a curing machine equipped with a bladder.
Abstract:
A method for manufacturing a bladder for use in manufacturing tires having a surface-modified rubber layer on an outer surface side of a base rubber layer, including the steps of: forming an uncross-linked body of the surface-modified rubber layer by molding a rubber composition including a modified butyl rubber composition and an organic peroxide and applying a siloxane compound having a (meth)acryloyl group to a surface of this rubber molded body; forming the base rubber layer from an unvulcanized body or vulcanized body formed from a rubber composition different than the modified butyl rubber composition; laminating the uncross-linked body of the surface-modified rubber layer on the outer surface side of the base rubber layer; and heat treating.
Abstract:
Disclosed is a low noise pneumatic tire having a configuration where, while installation work of a strip-shaped sound absorbent is simple, it is possible to simultaneously reduce cavity resonance and high-frequency noise, and thereby to effectively reduce noise when a vehicle is traveling. In the low noise pneumatic tire of the present invention, the strip-shaped sound absorbent is attached to an annular elastic fixing band, and then is installed onto an inner surface of a tread of the tire taking advantage of the elastic force of the annular elastic fixing band. The strip-shaped sound absorbent is formed of at least two kinds of porous materials whose sound absorption characteristics with respect to frequencies are different from one another.
Abstract:
There is provided a tire noise reduction device and a pneumatic tire, in which tire vibration can be reduced while durability is maintained and tire noise is further reduced.The tire noise reduction device 1 of the present invention includes two main sound absorbing members 3 for changing the cross-sectional area of a cavity 15 of a tire in the circumferential direction of the tire and two assistant sound absorbing members 4 disposed between the two main sound absorbing members 3. Each of the sound absorbing members 3 and 4 is formed of a porous material. Each main sound absorbing member 3 comprises a first sound absorbing part 3A located on a tread portion inner surface 11a side thereof and a second sound absorbing part 3B located on a side thereof away from the tread portion inner surface 11a. The second sound absorbing part 3B has a density lower than that of the first sound absorbing part 3A. Each assistant sound absorbing member 4 has a density higher than that of the second sound absorbing part 3B and a thickness less than that of the main sound absorbing member 3.
Abstract:
There is provided a tire noise reduction device and a pneumatic tire, in which weight can be reduced while sound absorbing characteristics are maintained and durability is improved.The tire noise reduction device 1A of the present invention includes a sound absorbing member 3 of flexible polyurethane foam to be attached to an inner surface of a tire facing a cavity of the tire. The sound absorbing member 3 comprises a first sound absorbing layer 3A placed on a tire inner surface side thereof. The first sound absorbing layer 3A has a tear strength (N/cm) per unit density (kg/m3) which is equal to or more than 0.30. The second sound absorbing layer 3B has a density which is lower than that of the first sound absorbing layer 3A.
Abstract:
Provided are a tire noise reduction device allowing rapid and reliable puncture-repair of a pneumatic tire provided with an annular sound absorbing member on the inner surface of a tread portion of the tire, and a pneumatic tire provided with the tire noise reduction device. The tire noise reduction device includes: the annular sound absorbing member made of a porous material; and a repair liquid permeable layer stacked on an outer peripheral surface of the sound absorbing member. The repair liquid permeable layer has many continuous pores and has a flow resistance lower than that of the porous material. The tire noise reduction device is mounted on the inner peripheral surface of a tread portion of the pneumatic tire.