Abstract:
A laser system includes first and second mirrors, a semiconductor laser and a high frequency pulse generator. The semiconductor laser generates optical power within an optical cavity and reflects the optical power between the first mirror and second mirrors. The optical power has a frequency of foriginal-laser. The high frequency pulse generator generates a high frequency pulse with a rise time greater than an optical cycle of the optical power within the optical cavity and directly impinges the high frequency pulse on the optical power within the optical cavity. Impinging the high frequency pulse on the optical power within the optical cavity causes a frequency shift of the optical power to generate a final laser frequency that is greater than foriginal-laser, as well as beyond a frequency band of the second mirror to cause a final laser to be emitted past the second mirror and from the semiconductor laser.
Abstract:
A nanostructure and method for assembly thereof are disclosed. The nanostructure includes a gain medium nanoparticle; an output coupler nanoparticle being discrete from and linked to the gain medium nanoparticle; and a plurality of metal nanoparticles being linked about the gain medium nanoparticle, wherein the gain medium nanoparticle and the output coupler nanoparticle are included in the nanostructure in a one to one ratio.
Abstract:
A photon-activated quantum dot capacitor and method of fabrication. A photon-activated quantum dot capacitor photodetector having a read only integrated circuit; and a photon-activated quantum dot capacitor chip hybridized with the read only integrated circuit, wherein said photon-activated quantum dot capacitor chip comprises colloidal quantum dots that detect photons as a change in a dielectric constant of the colloidal quantum dots of the photon-activated quantum dot capacitor chip, including the further implementation of a photodetector.
Abstract:
A laser system includes first and second mirrors, a semiconductor laser and a high frequency pulse generator. The semiconductor laser generates optical power within an optical cavity and reflects the optical power between the first mirror and second mirrors. The optical power has a frequency of foriginal-laser. The high frequency pulse generator generates a high frequency pulse with a rise time greater than an optical cycle of the optical power within the optical cavity and directly impinges the high frequency pulse on the optical power within the optical cavity. Impinging the high frequency pulse on the optical power within the optical cavity causes a frequency shift of the optical power to generate a final laser frequency that is greater than foriginal-laser as well as beyond a frequency band of the second mirror to cause a final laser to be emitted past the second mirror and from the semiconductor laser.
Abstract:
A nanostructure and method for assembly thereof are disclosed. The nanostructure includes a gain medium nanoparticle; an output coupler nanoparticle being discrete from and linked to the gain medium nanoparticle; and a plurality of metal nanoparticles being linked about the gain medium nanoparticle, wherein the gain medium nanoparticle and the output coupler nanoparticle are included in the nanostructure in a one to one ratio.
Abstract:
A nanostructure and method for assembly thereof are disclosed. The nanostructure includes a gain medium nanoparticle; an output coupler nanoparticle being discrete from and linked to the gain medium nanoparticle; and a plurality of metal nanoparticles being linked about the gain medium nanoparticle, wherein the gain medium nanoparticle and the output coupler nanoparticle are included in the nanostructure in a one to one ratio.
Abstract:
A nanostructure and method for assembly thereof are disclosed. An exemplary nanostructure includes a photocatalytic nanoparticle; a first tier of metal nanoparticles, each metal nanoparticle of the first tier being linked about the photocatalytic nanoparticle; and a second tier of metal nanoparticles, each metal nanoparticle of the second tier being linked to one of the metal nanoparticles of the first tier and located a distance from the photocatalytic nanoparticle greater than a distance between a metal nanoparticle of the first tier and the photocatalytic nanoparticle.
Abstract:
A nanostructure and method for assembly thereof are disclosed. An exemplary nanostructure includes a photocatalytic nanoparticle; a first tier of metal nanoparticles, each metal nanoparticle of the first tier being linked about the photocatalytic nanoparticle; and a second tier of metal nanoparticles, each metal nanoparticle of the second tier being linked to one of the metal nanoparticles of the first tier and located a distance from the photocatalytic nanoparticle greater than a distance between a metal nanoparticle of the first tier and the photocatalytic nanoparticle.