摘要:
The present invention relates to a method for producing a timepiece comprising at least one first part produced by a microfabrication or microforming method in at least one first material, said method comprising at least: a step of depositing, on said first part, without moulding, at least one second part of said timepiece in at least one second material, and a step of treating the second material in order to connect together the components on the first part.
摘要:
A metal magnetic particle provided with an oxide layer on a surface of an alloy particle containing Fe and Si. The oxide layer has a first oxide layer, a second oxide layer, a third oxide layer, and a fourth oxide layer. Also, in line analysis of element content by using a scanning transmission electron microscope-energy dispersive X-ray spectroscopy, the first oxide layer is a layer where Fe content takes a local maximum value, the second oxide layer is a layer where Fe content takes a local maximum value, the third oxide layer is a layer where Si content takes a local maximum value, and the fourth oxide layer is a layer where Fe content takes a local maximum value.
摘要:
Some variations provide a system for producing a functionalized powder, comprising: an agitated pressure vessel; first particles and second particles contained within the agitated pressure vessel; a fluid contained within the agitated pressure vessel; an exhaust line for releasing the fluid from the agitated pressure vessel; and a means for recovering a functionalized powder containing the second particles disposed onto surfaces of the first particles. A preferred fluid is carbon dioxide in liquefied or supercritical form. The carbon dioxide may be initially loaded into the pressure vessel as solid carbon dioxide. The pressure vessel may be batch or continuous and is operated under reaction conditions to functionalize the first particles with the second particles, thereby producing a functionalized powder, such as nanofunctionalized metal particles in which nanoparticles act as grain refiners for a component ultimately produced from the nanofunctionalized metal particles. Methods for making the functionalized powder are also disclosed.
摘要:
The present invention relates to a method for producing a treated object, comprising the steps of: applying a layer of particles to a target area; applying a liquid binder to a selected portion of the layer in accordance with a cross-section of the object, so that the particles in the selected portion are bonded; repeating the steps of applying a layer of particles and applying a binder for a plurality of layers so that the bonded portions of the adjacent layers are bonded to form an object, wherein at least a part of the particles comprises a meltable polymer. A binder which cures by cross-linking is preferably selected as the binder. The obtained object is at least partially contacted with a liquid heated to ≥T or with a powder bed heated to ≥T in order to obtain the treated object. T represents a temperature of ≥25° C., the liquid does not represent a solvent or a reaction partner for the binder present in the object and the meltable polymer, and the powder bed is different from the particles of the meltable polymer. The invention also relates to a treated object that can be obtained by the method according to the invention.
摘要:
Disclosed herein is a method for reducing a metal oxide in a metal containing precursor. The method comprises providing a reaction mixture comprising the metal oxide containing precursorand an aluminium reductant; heating the reaction mixture in the presence of solid or gaseous aluminium chloride to temperature at which reactionsthatresultin the metal oxide being reduced are initiated; controlling reaction conditions whereby the reaction mixture is prevented from reaching a temperature at which thermal runaway can occur; and isolating reaction products that include reduced metal oxide.
摘要:
Magnetic beads include: a magnetic metal powder; and a coating layer covering a surface of the magnetic metal powder. t/D50, which is a ratio of a thickness t of the coating layer to the magnetic beads diameter D50, is from 0.0001 to 0.05, and a Vickers hardness of the magnetic metal powder is 100 or more.
摘要:
Methods and systems are described for fabricating a component using 3D printing. A 3D printed piece is created including a body of the component, a support structure, and a first sacrificial interface region coupling the body of the component to the support structure. The body of the component is formed of a first metal or ceramic material and the first sacrificial interface region is formed at least partially of a second metal or ceramic material. The body of the component is then separated from the support structure by applying a chemical or electrochemical dissolution process to the 3D printed piece. Because the second metal or ceramic material is less resistant to the dissolution process than the first metal or ceramic material, the first sacrificial interface region at least partially dissolves, thereby separating the body of the metal component from the support structure, without dissolving the body of the component.
摘要:
The invention relates to an encapsulated metal particle comprising a core encapsulated in a shell, wherein the core comprises a metallic substance, and wherein the shell comprises a insulating substance. The invention also relates to a polymer composition comprising a plurality of the encapsulated metal particles, a mixture comprising a plurality of encapsulated metal particles and plurality of polymer particles, and the use of the encapsulated metal particle as an additive for increasing the thermal conductivity and/or radio frequency (RF) conductivity of a matrix substance such as an adhesive.
摘要:
A three-dimensional shaped article production method according to the invention is a method for producing a three-dimensional shaped article by stacking layers formed in a predetermined pattern, wherein a series of steps including a composition supply step of supplying a composition containing a plurality of particles to a predetermined part, and a bonding step of bonding the particles by irradiation with a laser light is performed repeatedly, and the composition supply step includes a step of forming a first region using a first composition containing first particles as the composition, and a step of forming a second region using a second composition containing second particles which are different from the first particles as the composition, and the bonding of the particles in the first region and the bonding of the particles in the second region are performed by irradiation with laser lights with a different spectrum.
摘要:
This invention provides a method for manufacturing a nanocomposite thermoelectric conversion material in which phonon-scattering particles having a specific shape are dispersed, reducing thermal conductivity and increasing thermoelectric conversion performance. Said method for manufacturing a nanocomposite thermoelectric conversion material, in which oxide phonon-scattering particles are dispersed within the matrix of a thermoelectric conversion material, is characterized by including the following stages: a first stage in which, in a solution, the reduction of a salt is used to precipitate out/grow nanoparticles consisting of elements constituting a thermoelectric conversion material, the polymerization of a precursor is used to precipitate out/grow nanoparticles consisting of an oxide constituting phonon-scattering particles, and a mixture of said nanoparticles is collected; and a second stage in which a hydrothermal treatment is used to alloy said mixture into composite nanoparticles, which are then sintered. This method for manufacturing a nanocomposite thermoelectric conversion material is also characterized in that in the aforementioned first stage, nanoparticles consisting of a first group of elements that constitute the thermoelectric conversion material are precipitated out or grown before nanoparticles consisting of oxides of a second group of elements that constitute the phonon-scattering particles.