Abstract:
Described herein is a composition including: (A) at least one lipase, and (B) at least one branched polyetheramine polyol with a polydispersity (Mw/Mn) in the range of from 5 to 25, wherein the branched polyetheramine polyol is based on a polycondensation product of at least one trialkanolamine.
Abstract:
Described herein is a multilayer film including at least one layer including a polymer composition obtainable by free-radical polymerization of a monomer composition including at least one monomer A) selected from α,β-ethylenically unsaturated mono- and dicarboxylic acids, salts of α,β-ethylenically unsaturated mono- and dicarboxylic acids, anhydrides of α,β-ethylenically unsaturated mono- and dicarboxylic acids and mixtures thereof, where the free-radical polymerization is effected in the presence of at least one polyether component. Also described herein is a process for producing the multilayer film, methods of using the multilayer film and a sheath or coating for a washing composition, cleaning composition or dishwashing composition portion including the multilayer film, and to washing compositions, cleaning compositions or dishwashing compositions including the multilayer film.
Abstract:
A process for cleaning dishware soiled with fatty residue is disclosed. The process is carried out at a temperature in the range of from 45 to 65° C. and using at least one formulation, comprising (A) at least one complexing agent, selected from the alkali metal salts of citric acid, aminocarboxylic acids and from sodium tripolyphosphate, (B) at least one non-ionic surfactant of general formula R1—CH(OH)—CH2—O-(AO)x—R2, and (C) at least one copolymer.
Abstract:
The present invention relates to amphiphilic star-like polyether. The core molecule is an aliphatic hyperbranched polyether polyol, which is further alkoxylated, first with ethylene oxide or combinations of ethylene oxide and C3-C20 alkylene oxide, preferably propylene oxide, and/or glycidol, and then with a C3-C20 alkylene oxide, preferably propylene oxide, or combination of ethylene oxide and propylene oxide, then optionally anionically modified. The resulting amphiphilic star-like polyether thus has an inner core based on an aliphatic hyperbranched polyether polyol, an inner shell predominantly containing polyethylene oxide units, the inner shell comprising at least 3 ethylene oxide units and an outer shell predominantly containing polypropylene oxide units, the outer shell comprising at least 3 propylene oxide units. They optionally contain anionic groups instead of hydroxyl groups on the periphery of the macromolecule. The invention further relates to their use as additive in laundry formulations and to their manufacturing process.
Abstract:
Disclosed are compositions comprising a) an antimicrobial agent, which is selected from the group consisting of biocides containing halogen atoms and/or containing phenolic moieties, formic acid, chlorine dioxide, chlorine dioxide generating compounds, dialdehydes; components containing an antimicrobial metal such as antimicrobial silver, and b) a polyamine, especially a polyethylenimine. The polyamine is effective as a booster for the antimicrobial agent.
Abstract:
Described herein is an enzyme preparation including Component (a): at least one compound according to general formula (I) wherein R1 is H; R2, R3, R4 are independently from each other selected from the group consisting of H, linear C1-C8 alkyl, and branched C3-C8 alkyl, C6-C10-aryl, non-substituted or substituted with one or more carboxylate or hydroxyl groups, and C6-C10-aryl-alkyl, wherein an alkyl of the C6-C10-aryl-alkyl is selected from the group consisting of linear C1-C8 alkyl and branched C3-C8 alkyl, wherein at least one of R2, R3, and R4 is not H, component (b): at least one enzyme selected from the group consisting of hydrolases (EC 3) and proteases component (c): at least one compound selected from the group consisting of solvents, enzyme stabilizers different from component (a), and compounds stabilizing the enzyme preparation.
Abstract:
Described herein is an enzyme preparation including component (a): at least one compound according to general formula (I) wherein R1 is; R2, R3, R4 are independently from each other selected from the group consisting of H, linear C1-C8 alkyl, and branched C3-C8 alkyl, C6-C10-aryl, non-substituted or substituted with one or more carboxylate or hydroxyl groups, and C6-C10-aryl-alkyl, wherein an alkyl of the C6-C10-aryl-alkyl is selected from the group consisting of linear C1-C8 alkyl and branched C3-C8 alkyl, wherein at least one of R2, R3, and R4 is not H, component (b): at least one enzyme selected from the group consisting of hydrolases (EC 3); and optionally component (c): at least one compound selected from the group consisting of solvents, enzyme stabilizers different from component (a), and compounds stabilizing the enzyme preparation.
Abstract:
Described herein is a process for manufacturing an alkoxylated polyalkylenimine, the process including the following steps: (a) providing a polyalkylenimine (A), (b) reacting the polyalkylenimine (A) with 0.5 to 1.3 moles of propylene oxide or butylene oxide per N—H function at a temperature in the range of 100 to 150° C., (c) reacting the product from step (b) with C2-C4-alkylene oxide wherein the C2-C4-alkylene oxide is different from the alkylene oxide used in step (b).
Abstract:
Polymers bearing the following structural elements per molecule: (A) an average of at least two alkoxylated (poly)alkylenimine units, said alkylene being selected from C2-C10-alkylene and said alkoxylation being selected from ethoxylation, propoxylation, butoxylation and combinations of at least two of the foregoing, (B) at least one polysiloxane unit, and (C) at least one linkage connecting at least two different alkoxylated (poly)alkylenimine units (A) bearing at least one polysiloxane unit (B), each link-age (C) being selected from organic spacers bearing in the range of from 4 to 30 carbon atoms.
Abstract:
The present invention relates to formulations comprising (A) at least one aminocarboxylate, selected from methylglycine diacetate (MGDA), iminodisuccinic acid (IDA) and glutaminic acid diacetate (GLDA), and salts and derivatives thereof, and (B) at least one alkyleneimine polymer which is covalently modified with at least one carboxylic acid or at least one derivative of a carboxylic acid or at least one derivative of carbonic acid, where up to at most 75 mol % of the nitrogen atoms of the primary and secondary amino groups of the alkyleneimine polymer have been reacted with carboxylic acid or derivative of carboxylic acid or carbonic acid.