摘要:
The present disclosure provides a method of producing a personalized medical record, comprising: sensing capabilities of a receiving device; retrieving stock information; retrieving personalized information; combining at least a portion of the stock information and at least a portion of the personalized information into the personalized record; formatting the personalized record based on a combination of the capabilities of the receiving device and a user's preference; and, transmitting the formatted personalized record to the device.
摘要:
The present disclosure provides a method of producing a personalized medical record, comprising: sensing capabilities of a receiving device; retrieving stock information; retrieving personalized information; combining at least a portion of the stock information and at least a portion of the personalized information into the personalized record; formatting the personalized record based on a combination of the capabilities of the receiving device and a user's preference; and, transmitting the formatted personalized record to the device.
摘要:
A method and system for image processing, in conjunction with classification of images between natural pictures and synthetic graphics, using SGLD texture (e.g., variance, bias, skewness, and fitness), color discreteness (e.g., R_L, R_U, and R_V normalized histograms), or edge features (e.g., pixels per detected edge, horizontal edges, and vertical edges) is provided. In another embodiment, a picture/graphics classifier using combinations of SGLD texture, color discreteness, and edge features is provided. In still another embodiment, a “soft” image classifier using combinations of two (2) or more SGLD texture, color discreteness, and edge features is provided. The “soft” classifier uses image features to classify areas of an input image in picture, graphics, or fuzzy classes.
摘要:
What is disclosed is a system and method for selecting the optimal wavelength ban combination for a multi-band infrared camera system which is optimized for skin detection. An objective function is constructed specifically for this application from classified performance and the algorithm generates wavelengths by maximizing the objective function. A specific wavelength band combination is selected which maximizes the objective function. Also disclosed is a 3-band and 4-band camera system with filters each having a transmittance of one of a combination of wavelength bands optimized to detect skin in the infrared band. The camera systems disclosed herein find their intended uses in a wide array of vehicle occupancy detection systems and applications. Various embodiments are disclosed.
摘要:
Aspects of color of a halftoned image are controlled or adjusted. A method for adjustment can include determining a color description of a color of an area or window associated with a target halftoned pixel, determining a desired adjustment to the color associated with the target pixel, determining a color change value based on the desired adjustment and the color description associated with the target pixel, combining the color change value with at least one value of the target halftoned pixel, thereby generating at least one combined target pixel value and quantizing the at least one combined target pixel value. For instance error diffusion and/or rank-ordered error diffusion is used to perform the quantization. Color adjustments can be based on user preference and/or calibration compensations between original and target devices.
摘要:
What is disclosed is a system and method for estimating color for pixels in an infrared image. In one embodiment, an infrared image is received which has been captured using a N-band infrared imaging system comprising a multi-spectral camera or a hyperspectral camera. The IR image is composed of an array of pixels with N intensity values having been collected for each pixel in the image. Then, for each pixel of interest, a search metric is used to search a database of vector samples to identify a visible-IR set which is closest to the intensity values of the IR band vector collected for the pixel. A visible vector representation is then estimated for the pixel based upon the visible portion corresponding to the closest visible-IR set. Thereafter, color coordinates for this pixel are computed from the visible vector. The method repeats for all pixels of interest in the IR image.
摘要:
Aspects of color of a halftoned image are controlled or adjusted. A method for adjustment can include determining a color description of a color of an area or window associated with a target halftoned pixel, determining a desired adjustment to the color associated with the target pixel, determining a color change value based on the desired adjustment and the color description associated with the target pixel, combining the color change value with at least one value of the target halftoned pixel, thereby generating at least one combined target pixel value and quantizing the at least one combined target pixel value. For instance error diffusion and/or rank-ordered error diffusion is used to perform the quantization. Color adjustments can be based on user preference and/or calibration compensations between original and target devices.
摘要:
An embodiment generally relates to systems and methods for electronically auto-filing and retrieving erasable paper document documents configured for ultraviolet (UV) imaging. A device can automatically generate an electronic version of the erasable paper document and store the electronic version in a database. A user can search the database for the electronic version with identification information associated with the erasable paper document, upon which the systems and methods can retrieve the electronic version of the erasable paper document for the user. The electronic version of the erasable paper document can be re-rendered either as a new erasable paper document, for display to the user, or other renderings.
摘要:
An embodiment generally relates to systems and methods for electronically auto-filing and retrieving erasable paper document documents configured for ultraviolet (UV) imaging. A device can embed a machine readable code on an erasable paper document, or can detect a machine readable code preprinted on the document. An electronic version of the erasable paper document along with the machine readable code can be stored in a database. When the machine readable code is later detected on a rendered document, the electronic version corresponding to the machine readable code can be retrieved from storage. The erasable paper document can be re-rendered using the retrieved electronic version either as a new erasable paper document, for display to the user, or other renderings.
摘要:
As set forth herein, a computer-implemented method facilitates pre-analyzing an image and automatically suggesting to the user the most suitable regions within an image for text-based personalization. Image regions that are spatially smooth and regions with existing text (e.g. signage, banners, etc.) are primary candidates for personalization. This gives rise to two sets of corresponding algorithms: one for identifying smooth areas, and one for locating text regions. Smooth regions are found by dividing the image into blocks and applying an iterative combining strategy, and those regions satisfying certain spatial properties (e.g. size, position, shape of the boundary) are retained as promising candidates. In one embodiment, connected component analysis is performed on the image for locating text regions. Finally, based on the smooth and text regions found in the image, several alternative approaches are described herein to derive an overall metric for “suitability for personalization.”