Abstract:
A laser apparatus for providing a stabilized multi mode laser beam includes an external cavity for providing an optical path for generating a laser beam which is stimulated by a gain medium, where the external cavity has first spectral characteristics, and a mode-selecting filter positioned within the optical path and having second spectral characteristics. The first characteristics and the second characteristics are adjusted to each other, so that the laser beam has at least two selected modes.
Abstract:
An apparatus and to a method of monitoring an interferometer, comprising the steps of: coupling a first optical signal into the interferometer and into a wavelength reference element, detecting a first resulting interference signal being a result of interference of parts of the first optical signal in the interferometer, detecting a resulting reference signal of the wavelength reference element, the resulting reference signal being a result of interaction of the first optical signal with the wavelength reference element, and comparing the first resulting interference signal with the resulting reference signal to detect a drift of the interferometer, if any.
Abstract:
A control unit for controlling a laser unit comprising a laser gain medium and an external cavity having a reflecting dispersion device. The laser gain medium is adapted for providing a first beam towards the reflecting dispersion device, the reflecting dispersion device is adapted for receiving the first beam and reflecting a beam, having a reflection angle dependent on the wavelength, towards the laser gain medium, and the laser gain medium is adapted for providing a second beam in another direction than the first beam. The control unit comprises an angle unit adapted for providing an angular variation signal indicative of an angular variation of the second beam, and an analysis unit adapted for receiving the angular variation signal and controlling the reflection angle of the reflecting dispersion device dependent on the angular variation signal.
Abstract:
First and second transmitted optical waves having orthogonal polarization states are combined in a polarization multiplexed optical wave. At an optical receiver, an electrical field of the polarization multiplexed optical wave is measured. A plurality of polarization states of the polarization multiplexed optical wave is determined from the measured electrical field. From the plurality of polarization states, a transform that aligns the orthogonal polarization states of the first and second transmitted optical waves with respect to principal axes of the optical receiver is estimated. The first and second transmitted optical waves are recovered by applying the transform to one of i) the polarization multiplexed optical wave and ii) the measured electrical field of the polarization multiplexed optical wave.
Abstract:
A wavelength tunable laser unit has a laser mode selection, and is adapted to provide a laser signal in accordance with one or more laser control parameters. For operating the laser unit, the laser signal is swept in a wavelength range, a laser operation signal indicative of the laser unit's operation during the sweep is received, and the laser operation signal is analyzed for detecting an indication of a mode hop occurred in the generated laser signals during the sweep. At least one correction value is determined based on the detected mode hop indication, and at least one of the one or more laser control parameters, applicable for a next wavelength sweep, is modified based on the determined at least one correction value.
Abstract:
Determining a physical property of a device under test—DUT—includes receiving an optical scatter signal returning from the DUT in response to a probe signal launched into the DUT, wavelength dependent separating a first response signal and a second response signal from the scatter signal, determining a first power information of the first response signal and a second power information of the second response signal, time-adjusting the first power response and the second power response to each other in order to compensate a group velocity difference between the first response signal and the second response signal within the DUT, and determining the physical property on the base of the time-adjusted power responses.
Abstract:
A laser being tunable in wavelength a first reflecting unit and a second unit, both reflecting units being arranged to at least partially reflect an incident beam of electromagnetic radiation towards each other, an optical path of said beam of electromagnetic radiation within said cavity, which is defined in length by said first and second reflecting unit a dispersive device, which is arranged, such that a portion of said optical path of said beam of electromagnetic radiation traverses through said dispersive device, wherein said dispersive device comprises a dispersive characteristic representing a functional dependence of an optical path length of said portion with respect to wavelength of said electromagnetic 6radiation, wherein said optical path length increases with an increasing wavelength of said electromagnetic radiation.
Abstract:
The present invention relates to a determination of a physical state of an optical device by measuring a response signal. At least two subsequent measurements are executed. Therefore, a first optical signal is transmitted to the optical device, wherein a first optical property of said first signal is varied according to a first function of the time. A second optical property of a first response signal returning from the optical device is measured over the time and a first result function of the second optical property of the first response signal over the first optical property of first optical signal is established. Further, a second optical signal is transmitted to the optical device, wherein the first optical property of said signal is varied according to a second function of the time that is different from the first function of time. The second optical property of the corresponding second response signal is measured and a second result function of the second optical property of the response signal over the first optical property of the transmitted optical signal is established. The physical state of the optical device is determined on the base of a combination of the first and second result functions.
Abstract:
This invention relates to a sled-guide-assembly, in particular for an optical attenuating device, comprising a straight guidance and a sled, which is movable within the guidance, wherein the guidance has an inner contour, comprising two guide rails, extending parallel to each other, the inner contour comprises a receiving space between the guide rails, the sled comprises an outer contour arranged in the receiving space, and supports an object, in particular an optical attenuating element, outside of the receiving space, the outer contour comprises first edges and second edges, the first edges rest against the guide rails at a first side, which is turned to the object, and overlap this first side transversally to the longitudinal direction of the guide rails, the second edges rest against the guide rails at a second side, which is turn away from the object, and overlap this second side transversally to the longitudinal direction of the guide rails, the second edges are flexible and abut with tension against the guide rails.
Abstract:
An apparatus calibrates an optical downconverter configured to receive an optical input signal at a signal input and an optical reference signal at a reference input, and to provide at multiple output nodes characterizing signals for characterizing the optical input signal. The downconverter includes receivers having corresponding optical inputs and respectively providing the characterizing signals at the output nodes, and multiple optical signal paths connected between one of the signal and reference inputs and one of the optical inputs. The apparatus includes a signal analyzing unit coupled to the output nodes and configured to receive and analyze the characterizing signals, a first switch for selectively enabling the optical input signal, and a second switch for selectively enabling the reference signal. The signal analyzing unit is configured to derive correction values based on determined signals at the output nodes derived from selectively enabling at least one of the optical input signal and the reference signal, and to correct the characterizing signals with the derived correction values.