摘要:
A technique for improving optical cross-connections comprises placing a switch in front of a number of processing units. So configured, the units are no longer dedicated to a specific link or signal. When necessary, a unit is connected/disconnected to one or more optical links by the switch to carry out any number of processing functions, such as regeneration, Raman pumping, dispersion equalization/compensation or performance monitoring. Because the units are no longer dedicated to specific links the cost of the cross-connections and the network it is a part of can be reduced.
摘要:
Units of traffic are routed between nodes in a network on corresponding sets of trunks, such that the traffic is balanced between disjoint paths. A restoration process for the traffic is implemented using service layer or transport layer switching. In a first embodiment, first and second nodes are connected by first and second sets of trunks, with each of the trunks in a given set of trunks supporting a designated portion of a given one of the units of traffic. The units of traffic are then routed such that a first half of a given one of the units of traffic is routed on a first one of the trunks in a given one of the sets of trunks, and a second half of the given unit is routed on a second one of the trunks in the given set of trunks. In other embodiments, the first and second nodes are connected by first and second sets of trunks so as to form a four-trunk ring, with each of the first and second sets of trunks including a primary trunk and a backup trunk. A given one of the units of traffic is then routed on either an upper or lower portion of the ring. The four trunk ring may be in the form of an IP/optical hybrid ring, in which case the restoration process is implemented using service layer switching, or a SONET/optical ring, in which case the restoration process is implemented using transport layer switching.
摘要:
In an IP addressing aspect of the invention, a method for use in facilitating transfer of packets in an Internet Protocol (IP) based communications system, wherein the communications system includes a plurality of network nodes and a plurality of mobile user stations, comprises the steps of: (i) inserting an address option field in a packet header of a packet to be transferred in the communications system, the address option field including supplemental address related data for facilitating transfer of packets in the communications system; and processing the packet within at least one of a network node and a mobile user station in the communications system in accordance with the supplemental address related data in the address option field of the packet header. The address option field may comprise an address type field, an address length field and an address data field. Various address related data may be included in the address data field to facilitate transfer of packets in an IP-based communications system.
摘要:
An Internet Protocol (IP)-based network incorporates an application level switching server and a number of packet endpoints. A packet endpoint multiplexes application sessions destined for different packet endpoints into one multiplexed session that is terminated with the application level switching server. The latter extracts each application session (or packets associated therewith) and repackages, or switches, them into other multiplexed sessions such that at least two switched packets are transmitted to different packet endpoints. The multiplexed sessions utilize either RTP/UDP/IP or UDP/IP encapsulation.
摘要:
In an IP addressing aspect of the invention, a method for use in an Internet Protocol (IP) based communications system, comprises the steps of: (i) assigning a temporary location IP address (e.g., LIPA) to a mobile user station in the communications system, the address being a combination of an identifier of the mobile user station (e.g., MID) and an identifier of a network node in the communications system with which the mobile user station is currently associated (e.g., RID); and transferring packets to and from the mobile user station in accordance with the temporary location IP address. The method may further comprise the step of changing the temporary location IP address assigned to the mobile user station when the station becomes associated with another network node of the communications system, the changed address being a combination of the identifier of the mobile user station and an identifier of the new network node. The method may further comprise the step of assigning a location IP address to a network node in the communications system, the address being a combination of an identifier of the network node and a common identifier of mobile user stations in the communications system.
摘要:
Precomputation techniques for determining primary and/or restoration paths in an optical or electrical network. A hybrid centralized/distributed approach is provided in which certain information used in distributed precomputation is downloaded from a central controller of the network. The downloaded information is used as an input to a distributed precomputation algorithm implemented by the network nodes in order to provide improved performance. The central controller makes use of its knowledge of global network topology in computing the information to be downloaded to the nodes. The downloaded information generally represents network information which changes with less frequency than other network information processed by the nodes as part of the distributed precomputation algorithm. The information downloaded from the central controller may include, for example, network connectivity information, capacities for at least a subset of the links in the network, a subset of all possible routes between a source node and a destination node in the network arranged in an appropriate initial search order, a link contention index for each of the links in the network, and indices assigned to one or more of the nodes and links of the network, wherein the indices are used to determine an order of processing operations involving the one or more nodes and links of the network.
摘要:
A new protocol layer is provided as part of a protocol stack associated with a packet-based multiaccess mobile communications system. The protocol layer is preferably located above a medium access control (MAC) protocol layer and a physical protocol layer of the system and below a transport/network protocol layer. Such a subnetwork protocol layer provides, inter alia, the communications system with various mobility management functions, for example, tracking mobile user stations throughout the system, mobile station access to the system, and connection/call continuity within the system. The subnetwork protocol layer of the invention also performs packet routing functions associated with the system. Routing can be accomplished in many ways, for example, via source routing, connectionless routing, or tunneling. Further, the new protocol layer of the invention is preferably located above a data link layer with respect to the protocol stack associated with communications between network nodes.
摘要:
Various methodologies and related apparatus associated with mobility management issues within a packet-based multiaccess mobile communications system, which includes a plurality of mobile user stations and a plurality of network nodes, are provided. Location management techniques include tracking and/or locating mobile stations within the system. The invention makes use of home and visiting location registers in which information such as mobile station addresses and/or host names associated with mobile stations are stored. Mobile access methodologies include a complete mobile access method and a direct mobile access method. The former allows a mobile station to preferably include a unique address in the packets being transmitted, while the latter allows the station to merely use the host name of the destination station. The invention also includes various in-call mobility management techniques, including handoffs, which make use of the concept of an anchor.
摘要:
A method and apparatus for transmitting and/or receiving variable-length packets (e.g., CDMA packets, CDPD packets) that are associated with different channels and which are multiplexed via a single virtual circuit (e.g., an ATM virtual circuit).
摘要:
Four stages of digital cellular architecture are presented which reuse much of the existing voice infrastructure while allowing graceful introduction of data and integrated voice/data services over industry standard, low cost platforms. First, a separate ATM-based infrastructure is introduced that supports data services. A new data call control is introduced on industry standard hardware platforms using object oriented and modular programming. Second, ATM is introduced at radio ports and call control functions are migrated to the new ATM-based call control platforms. Third, vocoders are introduced at the DCS. Fourth, the cellular functions of the legacy cellular switch are phased out and replaced by the ATM-based target architecture.