Abstract:
A transmission clutch module includes first and second races, and a plurality of race engagement mechanisms situated between the races. The module incorporates an integrated hydraulic actuator having an actuator cam ring that includes cam ramps configured for moving the race engagement mechanisms between positions adapted to selectively interact with the races. As such, the actuator, designed to be contained entirely within a generally circumferential envelope of the clutch module, may control rotation of the actuator cam ring between at least two spaced angular positions in at least one embodiment. In various other embodiments within the scope of this disclosure, the actuator cam ring may be adapted to rotate among any number of pre-determined positions to operatively permit or prevent the transmittal of torque between the first and second races.
Abstract:
A product is provided with a container holding a heat storage medium. A fluid is entrained in a conduit that is routed through the container and routed through a heat generating system. An initiator is operably connected to the container. The heat storage medium is responsive to the generation of a signal from the initiator. When the heat generating system is in operation, the fluid is moved through the conduit so that when the heat generating system is operating, heat generated as a by-product is entrained in the fluid, passed through the container via the conduit and transferred to the heat storage medium. When desirable to provide heat to the heat generating system, the initiator is operated to expose the heat storage medium to a signal triggering the release of heat from the heat storage medium that is transferred through the fluid to the heat generation system.
Abstract:
In an all-wheel drive (AWD) vehicle (10, 42), torque carrying connections are provided between the powertrain and all four wheels (12, 14, 22, 24). A multimode clutch module (50, 170) or clutches are provided to selectively disconnect two of the wheels (12, 14, 22, 24) from the powertrain during operating conditions where disconnection improves the performance and efficiency of the AWD vehicle (10, 42). The multimode clutch module (50, 170) may be installed at various locations of the AWD vehicle (10, 42), such as within a front or rear differential (20, 30), between a half axle (16, 18, 26, 28) and a differential (20, 30) or between a half axle (16, 18, 26, 28) and a corresponding wheel (12, 14, 22, 24), or within a transfer case (36) or power transfer unit (44).
Abstract:
A forward/reverse planetary gearset (412) may be adapted to employ multi-mode clutch modules (426, 430) in lieu of using only traditional friction clutches (326, 330). Such arrangement may reduce parasitic drag as well as achieve reductions in physical size of the gearset housing (408). Use of multi-mode clutch modules (426, 430) may offer either of or both forward and reverse controls of the planetary gearset (412). Thus, in at least one arrangement a multi-mode clutch (426) may provide forward clutch control while a friction clutch (330) provides reverse clutch control. In another arrangement the friction clutch (326) may provide the forward clutch control, while the multi-mode clutch (430) provides the reverse clutch control for the gearset (412). Finally, both forward and reverse controls of the gearset (412) may be provided via multi-mode clutches (426, 430), thus entirely avoiding use of any friction clutches (326, 330) for forward or reverse control functions of the planetary gearset (412).