-
公开(公告)号:US20180001475A1
公开(公告)日:2018-01-04
申请号:US15535654
申请日:2016-11-02
Applicant: Brainlab AG
Inventor: Wolfgang STEINLE , Christoffer HAMILTON , Nils FREILINGHAUS
CPC classification number: B25J9/1676 , A61B34/10 , A61B34/20 , A61B34/25 , A61B34/30 , A61B34/74 , A61B90/37 , A61B2034/102 , A61B2034/105 , A61B2034/107 , A61B2034/2048 , A61B2034/743 , A61B2034/744 , A61B2090/364 , A61B2090/365 , A61B2090/374 , A61B2090/3762 , A61B2090/378 , B25J9/1679 , G05B2219/45117
Abstract: A computer implemented method for determining a configuration of a medical robotic arm, wherein the configuration comprises a pose of the robotic arm and a position of a base of the robotic arm, comprising the steps of: —acquiring treatment information data representing information about the treatment to be performed by use of the robotic arm; —acquiring patient position data representing the position of a patient to be treated; and —calculating the configuration from the treatment information data and the patient position data.
-
公开(公告)号:US20170348056A1
公开(公告)日:2017-12-07
申请号:US15535958
申请日:2015-09-03
Applicant: Brainlab AG
Inventor: Wolfgang STEINLE , Christoffer HAMILTON , Nils FREILINGHAUS
CPC classification number: A61B34/20 , A61B10/0233 , A61B34/10 , A61B34/30 , A61B90/37 , A61B90/50 , A61B2034/105 , A61B2034/107 , A61B2034/2051 , A61B2034/2055 , A61B2034/2057 , A61B2034/2059 , A61B2034/2063 , A61B2034/2068 , A61B2090/0481 , A61B2090/364 , A61B2090/365 , A61B2090/3929 , A61B2090/397 , A61B2090/3975 , A61B2090/3979 , A61N5/1049 , A61N2005/1059 , B25J9/1666 , B25J9/1676 , G06F19/00 , G06T7/0012 , G06T7/70 , G06T11/001 , G06T2207/10024 , G06T2207/10028 , G06T2207/10081 , G06T2207/10088 , G06T2207/30024 , G06T2207/30241
Abstract: Disclosed is a computer-implemented method for planning a trajectory (11) through an anatomical body part (1), the trajectory (11) being usable for a medical procedure and the method comprising executing, on at least one processor of at least one computer, steps of: • a) acquiring (S1), at a processor, patient image data describing a medical image of a patient anatomical body part being the anatomical body part (1) in a patient's body; • b) acquiring (S2), at a processor, atlas trajectory data describing a model anatomical body part being a model of the patient anatomical body part, and describing the position of at least one predetermined trajectory through the model anatomical body part; • c) acquiring (S3), at a processor, critical structure data describing the position of at least one critical structure (5) in the model anatomical body part or in the patient anatomical body part; • d) determining (S4), by a processor and based on the patient image data and the atlas trajectory data and the critical structure, mapping data describing a mapping of the model anatomical body part, of the position of the at least one predetermined trajectory and of the position of the at least one critical structure (5) onto the medical image of the patient anatomical body part; • e) determining (S5), by a processor and based on the mapping data and the atlas trajectory data and the patient image data, analysis region data describing an analysis region in the patient image data, the analysis region (16) having a position in the patient anatomical body part fulfilling a predetermined spatial condition relative to the position of the mapped predetermined trajectory (6); • f) determining (S6), by the processor and based on the patient image data and the atlas trajectory data and the analysis region data and the critical structure data, straight trajectory data describing a straight line trajectory (11) through the patient anatomical body part having a position fulfilling a predetermined spatial condition relative to the position of at least one critical structure (5) in the patient anatomical body part.
-